qiskit-documentation/docs/api/qiskit/qiskit.circuit.library.Paul...

432 lines
17 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: PauliTwoDesign (latest version)
description: API reference for qiskit.circuit.library.PauliTwoDesign in the latest version of qiskit
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.PauliTwoDesign
---
# PauliTwoDesign
<Class id="qiskit.circuit.library.PauliTwoDesign" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/n_local/pauli_two_design.py#L24-L141" signature="qiskit.circuit.library.PauliTwoDesign(num_qubits=None, reps=3, seed=None, insert_barriers=False, name='PauliTwoDesign')" modifiers="class">
Bases: [`TwoLocal`](qiskit.circuit.library.TwoLocal "qiskit.circuit.library.n_local.two_local.TwoLocal")
The Pauli Two-Design ansatz.
This class implements a particular form of a 2-design circuit \[1], which is frequently studied in quantum machine learning literature, such as e.g. the investigating of Barren plateaus in variational algorithms \[2].
The circuit consists of alternating rotation and entanglement layers with an initial layer of $\sqrt{H} = RY(\pi/4)$ gates. The rotation layers contain single qubit Pauli rotations, where the axis is chosen uniformly at random to be X, Y or Z. The entanglement layers is compromised of pairwise CZ gates with a total depth of 2.
For instance, the circuit could look like this (but note that choosing a different seed yields different Pauli rotations).
```python
┌─────────┐┌──────────┐ ░ ┌──────────┐ ░ ┌──────────┐
q_0: ┤ RY(π/4) ├┤ RZ(θ[0]) ├─■─────░─┤ RY(θ[4]) ├─■─────░──┤ RZ(θ[8]) ├
├─────────┤├──────────┤ │ ░ ├──────────┤ │ ░ ├──────────┤
q_1: ┤ RY(π/4) ├┤ RZ(θ[1]) ├─■──■──░─┤ RY(θ[5]) ├─■──■──░──┤ RX(θ[9]) ├
├─────────┤├──────────┤ │ ░ ├──────────┤ │ ░ ┌┴──────────┤
q_2: ┤ RY(π/4) ├┤ RX(θ[2]) ├─■──■──░─┤ RY(θ[6]) ├─■──■──░─┤ RX(θ[10]) ├
├─────────┤├──────────┤ │ ░ ├──────────┤ │ ░ ├───────────┤
q_3: ┤ RY(π/4) ├┤ RZ(θ[3]) ├─■─────░─┤ RX(θ[7]) ├─■─────░─┤ RY(θ[11]) ├
└─────────┘└──────────┘ ░ └──────────┘ ░ └───────────┘
```
**Examples**
```python
from qiskit.circuit.library import PauliTwoDesign
circuit = PauliTwoDesign(4, reps=2, seed=5, insert_barriers=True)
circuit.draw('mpl')
```
![../\_images/qiskit-circuit-library-PauliTwoDesign-1.png](/images/api/qiskit/qiskit-circuit-library-PauliTwoDesign-1.png)
**References**
**\[1]: Nakata et al., Unitary 2-designs from random X- and Z-diagonal unitaries.**
[arXiv:1502.07514](https://arxiv.org/pdf/1502.07514.pdf)
**\[2]: McClean et al., Barren plateaus in quantum neural network training landscapes.**
[arXiv:1803.11173](https://arxiv.org/pdf/1803.11173.pdf)
**Parameters**
* **num\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) The number of qubits of the Pauli Two-Design circuit.
* **reps** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) Specifies how often a block consisting of a rotation layer and entanglement layer is repeated.
* **seed** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) The seed for randomly choosing the axes of the Pauli rotations.
* **insert\_barriers** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) If `True`, barriers are inserted in between each layer. If `False`, no barriers are inserted. Defaults to `False`.
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.PauliTwoDesign.ancillas">
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.PauliTwoDesign.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.PauliTwoDesign.clbits">
A list of `Clbit`s in the order that they were added. You should not mutate this.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.PauliTwoDesign.data">
The circuit data (instructions and context).
**Returns**
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
**Return type**
QuantumCircuitData
</Attribute>
### entanglement
<Attribute id="qiskit.circuit.library.PauliTwoDesign.entanglement">
Get the entanglement strategy.
**Returns**
The entanglement strategy, see `get_entangler_map()` for more detail on how the format is interpreted.
</Attribute>
### entanglement\_blocks
<Attribute id="qiskit.circuit.library.PauliTwoDesign.entanglement_blocks">
The blocks in the entanglement layers.
**Returns**
The blocks in the entanglement layers.
</Attribute>
### flatten
<Attribute id="qiskit.circuit.library.PauliTwoDesign.flatten">
Returns whether the circuit is wrapped in nested gates/instructions or flattened.
</Attribute>
### global\_phase
<Attribute id="qiskit.circuit.library.PauliTwoDesign.global_phase">
The global phase of the current circuit scope in radians.
</Attribute>
### initial\_state
<Attribute id="qiskit.circuit.library.PauliTwoDesign.initial_state">
Return the initial state that is added in front of the n-local circuit.
**Returns**
The initial state.
</Attribute>
### insert\_barriers
<Attribute id="qiskit.circuit.library.PauliTwoDesign.insert_barriers">
If barriers are inserted in between the layers or not.
**Returns**
`True`, if barriers are inserted in between the layers, `False` if not.
</Attribute>
### instances
<Attribute id="qiskit.circuit.library.PauliTwoDesign.instances" attributeValue="189" />
### layout
<Attribute id="qiskit.circuit.library.PauliTwoDesign.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.PauliTwoDesign.metadata">
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_captured\_vars
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_captured_vars">
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.PauliTwoDesign.num_input_vars "qiskit.circuit.library.PauliTwoDesign.num_input_vars") must be zero.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_clbits">
Return number of classical bits.
</Attribute>
### num\_declared\_vars
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_declared_vars">
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the `iter_declared_vars()` iterable.
</Attribute>
### num\_input\_vars
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_input_vars">
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.PauliTwoDesign.num_captured_vars "qiskit.circuit.library.PauliTwoDesign.num_captured_vars") must be zero.
</Attribute>
### num\_layers
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_layers">
Return the number of layers in the n-local circuit.
**Returns**
The number of layers in the circuit.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_parameters">
The number of parameter objects in the circuit.
</Attribute>
### num\_parameters\_settable
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_parameters_settable">
Return the number of settable parameters.
**Returns**
The number of possibly distinct parameters.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_qubits">
Returns the number of qubits in this circuit.
**Returns**
The number of qubits.
</Attribute>
### num\_vars
<Attribute id="qiskit.circuit.library.PauliTwoDesign.num_vars">
The number of real-time classical variables in the circuit.
This is the length of the `iter_vars()` iterable.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.PauliTwoDesign.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") When circuit is not scheduled.
</Attribute>
### ordered\_parameters
<Attribute id="qiskit.circuit.library.PauliTwoDesign.ordered_parameters">
The parameters used in the underlying circuit.
This includes float values and duplicates.
**Examples**
```python
>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
```
**Returns**
The parameters objects used in the circuit.
</Attribute>
### parameter\_bounds
<Attribute id="qiskit.circuit.library.PauliTwoDesign.parameter_bounds">
The parameter bounds for the unbound parameters in the circuit.
**Returns**
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If `None` is returned, problem is fully unbounded.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.PauliTwoDesign.parameters">
The parameters defined in the circuit.
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
**Examples**
The snippet below shows that insertion order of parameters does not matter.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```
**Returns**
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
</Attribute>
### preferred\_init\_points
<Attribute id="qiskit.circuit.library.PauliTwoDesign.preferred_init_points">
The initial points for the parameters. Can be stored as initial guess in optimization.
**Returns**
The initial values for the parameters, or None, if none have been set.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.PauliTwoDesign.prefix" attributeValue="'circuit'" />
### qregs
<Attribute id="qiskit.circuit.library.PauliTwoDesign.qregs" attributeTypeHint="list[QuantumRegister]">
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
</Attribute>
### qubits
<Attribute id="qiskit.circuit.library.PauliTwoDesign.qubits">
A list of `Qubit`s in the order that they were added. You should not mutate this.
</Attribute>
### reps
<Attribute id="qiskit.circuit.library.PauliTwoDesign.reps">
The number of times rotation and entanglement block are repeated.
**Returns**
The number of repetitions.
</Attribute>
### rotation\_blocks
<Attribute id="qiskit.circuit.library.PauliTwoDesign.rotation_blocks">
The blocks in the rotation layers.
**Returns**
The blocks in the rotation layers.
</Attribute>
### name
<Attribute id="qiskit.circuit.library.PauliTwoDesign.name" attributeTypeHint="str">
A human-readable name for the circuit.
</Attribute>
### cregs
<Attribute id="qiskit.circuit.library.PauliTwoDesign.cregs" attributeTypeHint="list[ClassicalRegister]">
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.PauliTwoDesign.duration" attributeTypeHint="int | float | None">
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.PauliTwoDesign.unit "qiskit.circuit.library.PauliTwoDesign.unit").
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.PauliTwoDesign.unit">
The unit that [`duration`](#qiskit.circuit.library.PauliTwoDesign.duration "qiskit.circuit.library.PauliTwoDesign.duration") is specified in.
</Attribute>
</Class>