qiskit-documentation/docs/api/qiskit/qiskit.circuit.library.Line...

323 lines
15 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: LinearAmplitudeFunction (latest version)
description: API reference for qiskit.circuit.library.LinearAmplitudeFunction in the latest version of qiskit
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.LinearAmplitudeFunction
---
# LinearAmplitudeFunction
<Class id="qiskit.circuit.library.LinearAmplitudeFunction" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/linear_amplitude_function.py#L22-L173" signature="qiskit.circuit.library.LinearAmplitudeFunction(num_state_qubits, slope, offset, domain, image, rescaling_factor=1, breakpoints=None, name='F')" modifiers="class">
Bases: [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
A circuit implementing a (piecewise) linear function on qubit amplitudes.
An amplitude function $F$ of a function $f$ is a mapping
$$
F|x\rangle|0\rangle = \sqrt{1 - \hat{f}(x)} |x\rangle|0\rangle + \sqrt{\hat{f}(x)}
|x\rangle|1\rangle.
$$
for a function $\hat{f}: \{ 0, ..., 2^n - 1 \} \rightarrow [0, 1]$, where $|x\rangle$ is a $n$ qubit state.
This circuit implements $F$ for piecewise linear functions $\hat{f}$. In this case, the mapping $F$ can be approximately implemented using a Taylor expansion and linearly controlled Pauli-Y rotations, see \[1, 2] for more detail. This approximation uses a `rescaling_factor` to determine the accuracy of the Taylor expansion.
In general, the function of interest $f$ is defined from some interval $[a,b]$, the `domain` to $[c,d]$, the `image`, instead of $\{ 1, ..., N \}$ to $[0, 1]$. Using an affine transformation we can rescale $f$ to $\hat{f}$:
$$
\hat{f}(x) = \frac{f(\phi(x)) - c}{d - c}
$$
with
$$
\phi(x) = a + \frac{b - a}{2^n - 1} x.
$$
If $f$ is a piecewise linear function on $m$ intervals $[p_{i-1}, p_i], i \in \{1, ..., m\}$ with slopes $\alpha_i$ and offsets $\beta_i$ it can be written as
$$
f(x) = \sum_{i=1}^m 1_{[p_{i-1}, p_i]}(x) (\alpha_i x + \beta_i)
$$
where $1_{[a, b]}$ is an indication function that is 1 if the argument is in the interval $[a, b]$ and otherwise 0. The breakpoints $p_i$ can be specified by the `breakpoints` argument.
**References**
**\[1]: Woerner, S., & Egger, D. J. (2018).**
Quantum Risk Analysis. [arXiv:1806.06893](http://arxiv.org/abs/1806.06893)
**\[2]: Gacon, J., Zoufal, C., & Woerner, S. (2020).**
Quantum-Enhanced Simulation-Based Optimization. [arXiv:2005.10780](http://arxiv.org/abs/2005.10780)
**Parameters**
* **num\_state\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) The number of qubits used to encode the variable $x$.
* **slope** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)") *|*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) The slope of the linear function. Can be a list of slopes if it is a piecewise linear function.
* **offset** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)") *|*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) The offset of the linear function. Can be a list of offsets if it is a piecewise linear function.
* **domain** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) The domain of the function as tuple $(x_\min{}, x_\max{})$.
* **image** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) The image of the function as tuple $(f_\min{}, f_\max{})$.
* **rescaling\_factor** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) The rescaling factor to adjust the accuracy in the Taylor approximation.
* **breakpoints** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*] | None*) The breakpoints if the function is piecewise linear. If None, the function is not piecewise.
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) Name of the circuit.
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.ancillas">
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.clbits">
A list of `Clbit`s in the order that they were added. You should not mutate this.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.data">
The circuit data (instructions and context).
**Returns**
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
**Return type**
QuantumCircuitData
</Attribute>
### global\_phase
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.global_phase">
The global phase of the current circuit scope in radians.
</Attribute>
### instances
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.instances" attributeValue="178" />
### layout
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.metadata">
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_captured\_vars
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_captured_vars">
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.LinearAmplitudeFunction.num_input_vars "qiskit.circuit.library.LinearAmplitudeFunction.num_input_vars") must be zero.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_clbits">
Return number of classical bits.
</Attribute>
### num\_declared\_vars
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_declared_vars">
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the `iter_declared_vars()` iterable.
</Attribute>
### num\_input\_vars
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_input_vars">
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.LinearAmplitudeFunction.num_captured_vars "qiskit.circuit.library.LinearAmplitudeFunction.num_captured_vars") must be zero.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_parameters">
The number of parameter objects in the circuit.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_qubits">
Return number of qubits.
</Attribute>
### num\_vars
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_vars">
The number of real-time classical variables in the circuit.
This is the length of the `iter_vars()` iterable.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") When circuit is not scheduled.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.parameters">
The parameters defined in the circuit.
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
**Examples**
The snippet below shows that insertion order of parameters does not matter.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```
**Returns**
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.prefix" attributeValue="'circuit'" />
### qubits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.qubits">
A list of `Qubit`s in the order that they were added. You should not mutate this.
</Attribute>
### name
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.name" attributeTypeHint="str">
A human-readable name for the circuit.
</Attribute>
### qregs
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.qregs" attributeTypeHint="list[QuantumRegister]">
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
</Attribute>
### cregs
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.cregs" attributeTypeHint="list[ClassicalRegister]">
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.duration" attributeTypeHint="int | float | None">
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.LinearAmplitudeFunction.unit "qiskit.circuit.library.LinearAmplitudeFunction.unit").
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.unit">
The unit that [`duration`](#qiskit.circuit.library.LinearAmplitudeFunction.duration "qiskit.circuit.library.LinearAmplitudeFunction.duration") is specified in.
</Attribute>
## Methods
### post\_processing
<Function id="qiskit.circuit.library.LinearAmplitudeFunction.post_processing" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/linear_amplitude_function.py#L154-L173" signature="post_processing(scaled_value)">
Map the function value of the approximated $\hat{f}$ to $f$.
**Parameters**
**scaled\_value** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) A function value from the Taylor expansion of $\hat{f}(x)$.
**Returns**
The `scaled_value` mapped back to the domain of $f$, by first inverting the transformation used for the Taylor approximation and then mapping back from $[0, 1]$ to the original domain.
**Return type**
[float](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")
</Function>
</Class>