319 lines
14 KiB
Plaintext
319 lines
14 KiB
Plaintext
---
|
||
title: HRSCumulativeMultiplier (latest version)
|
||
description: API reference for qiskit.circuit.library.HRSCumulativeMultiplier in the latest version of qiskit
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.HRSCumulativeMultiplier
|
||
---
|
||
|
||
# HRSCumulativeMultiplier
|
||
|
||
<Class id="qiskit.circuit.library.HRSCumulativeMultiplier" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/multipliers/hrs_cumulative_multiplier.py#L21-L138" signature="qiskit.circuit.library.HRSCumulativeMultiplier(num_state_qubits, num_result_qubits=None, adder=None, name='HRSCumulativeMultiplier')" modifiers="class">
|
||
Bases: `Multiplier`
|
||
|
||
A multiplication circuit to store product of two input registers out-of-place.
|
||
|
||
Circuit uses the approach from \[1]. As an example, a multiplier circuit that performs a non-modular multiplication on two 3-qubit sized registers with the default adder is as follows (where `Adder` denotes the `CDKMRippleCarryAdder`):
|
||
|
||
```python
|
||
a_0: ────■─────────────────────────
|
||
│
|
||
a_1: ────┼─────────■───────────────
|
||
│ │
|
||
a_2: ────┼─────────┼─────────■─────
|
||
┌───┴────┐┌───┴────┐┌───┴────┐
|
||
b_0: ┤0 ├┤0 ├┤0 ├
|
||
│ ││ ││ │
|
||
b_1: ┤1 ├┤1 ├┤1 ├
|
||
│ ││ ││ │
|
||
b_2: ┤2 ├┤2 ├┤2 ├
|
||
│ ││ ││ │
|
||
out_0: ┤3 ├┤ ├┤ ├
|
||
│ ││ ││ │
|
||
out_1: ┤4 ├┤3 ├┤ ├
|
||
│ Adder ││ Adder ││ Adder │
|
||
out_2: ┤5 ├┤4 ├┤3 ├
|
||
│ ││ ││ │
|
||
out_3: ┤6 ├┤5 ├┤4 ├
|
||
│ ││ ││ │
|
||
out_4: ┤ ├┤6 ├┤5 ├
|
||
│ ││ ││ │
|
||
out_5: ┤ ├┤ ├┤6 ├
|
||
│ ││ ││ │
|
||
aux_0: ┤7 ├┤7 ├┤7 ├
|
||
└────────┘└────────┘└────────┘
|
||
```
|
||
|
||
Multiplication in this circuit is implemented in a classical approach by performing a series of shifted additions using one of the input registers while the qubits from the other input register act as control qubits for the adders.
|
||
|
||
**References:**
|
||
|
||
\[1] Häner et al., Optimizing Quantum Circuits for Arithmetic, 2018. [arXiv:1805.12445](https://arxiv.org/pdf/1805.12445.pdf)
|
||
|
||
**Parameters**
|
||
|
||
* **num\_state\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) – The number of qubits in either input register for state $|a\rangle$ or $|b\rangle$. The two input registers must have the same number of qubits.
|
||
* **num\_result\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) – The number of result qubits to limit the output to. If number of result qubits is $n$, multiplication modulo $2^n$ is performed to limit the output to the specified number of qubits. Default value is `2 * num_state_qubits` to represent any possible result from the multiplication of the two inputs.
|
||
* **adder** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit") *| None*) – Half adder circuit to be used for performing multiplication. The CDKMRippleCarryAdder is used as default if no adder is provided.
|
||
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) – The name of the circuit object.
|
||
|
||
**Raises**
|
||
|
||
[**NotImplementedError**](https://docs.python.org/3/library/exceptions.html#NotImplementedError "(in Python v3.13)") – If `num_result_qubits` is not default and a custom adder is provided.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.ancillas">
|
||
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.clbits">
|
||
A list of `Clbit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.data">
|
||
The circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.global_phase">
|
||
The global phase of the current circuit scope in radians.
|
||
</Attribute>
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.instances" attributeValue="198" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.metadata">
|
||
Arbitrary user-defined metadata for the circuit.
|
||
|
||
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_captured\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_captured_vars">
|
||
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
|
||
|
||
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.HRSCumulativeMultiplier.num_input_vars "qiskit.circuit.library.HRSCumulativeMultiplier.num_input_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_declared\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_declared_vars">
|
||
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
|
||
|
||
This is the length of the `iter_declared_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### num\_input\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_input_vars">
|
||
The number of real-time classical variables in the circuit marked as circuit inputs.
|
||
|
||
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.HRSCumulativeMultiplier.num_captured_vars "qiskit.circuit.library.HRSCumulativeMultiplier.num_captured_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_qubits">
|
||
Return number of qubits.
|
||
</Attribute>
|
||
|
||
### num\_result\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_result_qubits">
|
||
The number of result qubits to limit the output to.
|
||
|
||
**Returns**
|
||
|
||
The number of result qubits.
|
||
</Attribute>
|
||
|
||
### num\_state\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_state_qubits">
|
||
The number of state qubits, i.e. the number of bits in each input register.
|
||
|
||
**Returns**
|
||
|
||
The number of state qubits.
|
||
</Attribute>
|
||
|
||
### num\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.num_vars">
|
||
The number of real-time classical variables in the circuit.
|
||
|
||
This is the length of the `iter_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.prefix" attributeValue="'circuit'" />
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.qubits">
|
||
A list of `Qubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.name" attributeTypeHint="str">
|
||
A human-readable name for the circuit.
|
||
</Attribute>
|
||
|
||
### qregs
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.qregs" attributeTypeHint="list[QuantumRegister]">
|
||
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### cregs
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.cregs" attributeTypeHint="list[ClassicalRegister]">
|
||
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.duration" attributeTypeHint="int | float | None">
|
||
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.HRSCumulativeMultiplier.unit "qiskit.circuit.library.HRSCumulativeMultiplier.unit").
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.circuit.library.HRSCumulativeMultiplier.unit">
|
||
The unit that [`duration`](#qiskit.circuit.library.HRSCumulativeMultiplier.duration "qiskit.circuit.library.HRSCumulativeMultiplier.duration") is specified in.
|
||
</Attribute>
|
||
</Class>
|
||
|