qiskit-documentation/docs/api/qiskit/1.2/qiskit.quantum_info.Pauli.mdx

563 lines
24 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Pauli (v1.2)
description: API reference for qiskit.quantum_info.Pauli in qiskit v1.2
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.quantum_info.Pauli
---
# Pauli
<Class id="qiskit.quantum_info.Pauli" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L39-L749" signature="qiskit.quantum_info.Pauli(data=None)" modifiers="class">
Bases: `BasePauli`
N-qubit Pauli operator.
This class represents an operator $P$ from the full $n$-qubit *Pauli* group
$$
P = (-i)^{q} P_{n-1} \otimes ... \otimes P_{0}
$$
where $q\in \mathbb{Z}_4$ and $P_i \in \{I, X, Y, Z\}$ are single-qubit Pauli matrices:
$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},
Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$
**Initialization**
A Pauli object can be initialized in several ways:
> **`Pauli(obj)`**
>
> where `obj` is a Pauli string, `Pauli` or [`ScalarOp`](qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp") operator, or a Pauli gate or `QuantumCircuit` containing only Pauli gates.
>
> **`Pauli((z, x, phase))`**
>
> where `z` and `x` are boolean `numpy.ndarrays` and `phase` is an integer in `[0, 1, 2, 3]`.
>
> **`Pauli((z, x))`**
>
> equivalent to `Pauli((z, x, 0))` with trivial phase.
**String representation**
An $n$-qubit Pauli may be represented by a string consisting of $n$ characters from `['I', 'X', 'Y', 'Z']`, and optionally phase coefficient in `['', '-i', '-', 'i']`. For example: `'XYZ'` or `'-iZIZ'`.
In the string representation qubit-0 corresponds to the right-most Pauli character, and qubit-$(n-1)$ to the left-most Pauli character. For example `'XYZ'` represents $X\otimes Y \otimes Z$ with `'Z'` on qubit-0, `'Y'` on qubit-1, and `'X'` on qubit-2.
The string representation can be converted to a `Pauli` using the class initialization (`Pauli('-iXYZ')`). A `Pauli` object can be converted back to the string representation using the [`to_label()`](#qiskit.quantum_info.Pauli.to_label "qiskit.quantum_info.Pauli.to_label") method or `str(pauli)`.
<Admonition title="Note" type="note">
Using `str` to convert a `Pauli` to a string will truncate the returned string for large numbers of qubits while [`to_label()`](#qiskit.quantum_info.Pauli.to_label "qiskit.quantum_info.Pauli.to_label") will return the full string with no truncation. The default truncation length is 50 characters. The default value can be changed by setting the class `__truncate__` attribute to an integer value. If set to `0` no truncation will be performed.
</Admonition>
**Array Representation**
The internal data structure of an $n$-qubit Pauli is two length-$n$ boolean vectors $z \in \mathbb{Z}_2^N$, $x \in \mathbb{Z}_2^N$, and an integer $q \in \mathbb{Z}_4$ defining the Pauli operator
$$
P = (-i)^{q + z\cdot x} Z^z \cdot X^x.
$$
The $k$-th qubit corresponds to the $k$-th entry in the $z$ and $x$ arrays
$$
\begin{aligned}
P &= P_{n-1} \otimes ... \otimes P_{0} \\
P_k &= (-i)^{z[k] * x[k]} Z^{z[k]}\cdot X^{x[k]}
\end{aligned}
$$
where `z[k] = P.z[k]`, `x[k] = P.x[k]` respectively.
The $z$ and $x$ arrays can be accessed and updated using the [`z`](#qiskit.quantum_info.Pauli.z "qiskit.quantum_info.Pauli.z") and [`x`](#qiskit.quantum_info.Pauli.x "qiskit.quantum_info.Pauli.x") properties respectively. The phase integer $q$ can be accessed and updated using the [`phase`](#qiskit.quantum_info.Pauli.phase "qiskit.quantum_info.Pauli.phase") property.
**Matrix Operator Representation**
Paulis can be converted to $(2^n, 2^n)$ [`Operator`](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator") using the `to_operator()` method, or to a dense or sparse complex matrix using the [`to_matrix()`](#qiskit.quantum_info.Pauli.to_matrix "qiskit.quantum_info.Pauli.to_matrix") method.
**Data Access**
The individual qubit Paulis can be accessed and updated using the `[]` operator which accepts integer, lists, or slices for selecting subsets of Paulis. Note that selecting subsets of Paulis will discard the phase of the current Pauli.
For example
```python
from qiskit.quantum_info import Pauli
P = Pauli('-iXYZ')
print('P[0] =', repr(P[0]))
print('P[1] =', repr(P[1]))
print('P[2] =', repr(P[2]))
print('P[:] =', repr(P[:]))
print('P[::-1] =', repr(P[::-1]))
```
Initialize the Pauli.
When using the symplectic array input data both z and x arguments must be provided, however the first (z) argument can be used alone for string label, Pauli operator, or [`ScalarOp`](qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp") input data.
**Parameters**
**data** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") *or*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)") *or*[*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli") *or*[*ScalarOp*](qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")) input data for Pauli. If input is a tuple it must be of the form `(z, x)` or `(z, x, phase)` where `z` and `x` are boolean Numpy arrays, and phase is an integer from $\mathbb{Z}_4$. If input is a string, it must be a concatenation of a phase and a Pauli string (e.g. `'XYZ', '-iZIZ'`) where a phase string is a combination of at most three characters from `['+', '-', '']`, `['1', '']`, and `['i', 'j', '']` in this order, e.g. `''`, `'-1j'` while a Pauli string is 1 or more characters of `'I'`, `'X'`, `'Y'`, or `'Z'`, e.g. `'Z'`, `'XIYY'`.
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if input array is invalid shape.
## Attributes
### dim
<Attribute id="qiskit.quantum_info.Pauli.dim">
Return tuple (input\_shape, output\_shape).
</Attribute>
### name
<Attribute id="qiskit.quantum_info.Pauli.name">
Unique string identifier for operation type.
</Attribute>
### num\_clbits
<Attribute id="qiskit.quantum_info.Pauli.num_clbits">
Number of classical bits.
</Attribute>
### num\_qubits
<Attribute id="qiskit.quantum_info.Pauli.num_qubits">
Return the number of qubits if a N-qubit operator or None otherwise.
</Attribute>
### phase
<Attribute id="qiskit.quantum_info.Pauli.phase">
Return the group phase exponent for the Pauli.
</Attribute>
### qargs
<Attribute id="qiskit.quantum_info.Pauli.qargs">
Return the qargs for the operator.
</Attribute>
### settings
<Attribute id="qiskit.quantum_info.Pauli.settings">
Return settings.
</Attribute>
### x
<Attribute id="qiskit.quantum_info.Pauli.x">
The x vector for the Pauli.
</Attribute>
### z
<Attribute id="qiskit.quantum_info.Pauli.z">
The z vector for the Pauli.
</Attribute>
## Methods
### adjoint
<Function id="qiskit.quantum_info.Pauli.adjoint" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L524-L525" signature="adjoint()">
Return the adjoint of the Operator.
</Function>
### anticommutes
<Function id="qiskit.quantum_info.Pauli.anticommutes" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L554-L564" signature="anticommutes(other, qargs=None)">
Return True if other Pauli anticommutes with self.
**Parameters**
* **other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) another Pauli operator.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) qubits to apply dot product on (default: None).
**Returns**
True if Paulis anticommute, False if they commute.
**Return type**
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
</Function>
### apply\_layout
<Function id="qiskit.quantum_info.Pauli.apply_layout" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L706-L749" signature="apply_layout(layout, num_qubits=None)">
Apply a transpiler layout to this [`Pauli`](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
**Parameters**
* **layout** ([*TranspileLayout*](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") *|*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*] | None*) Either a [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout"), a list of integers or None. If both layout and num\_qubits are none, a copy of the operator is returned.
* **num\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) The number of qubits to expand the operator to. If not provided then if `layout` is a [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") the number of the transpiler output circuit qubits will be used by default. If `layout` is a list of integers the permutation specified will be applied without any expansion. If layout is None, the operator will be expanded to the given number of qubits.
**Returns**
A new [`Pauli`](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli") with the provided layout applied
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
</Function>
### commutes
<Function id="qiskit.quantum_info.Pauli.commutes" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L535-L552" signature="commutes(other, qargs=None)">
Return True if the Pauli commutes with other.
**Parameters**
* **other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli") *or*[*PauliList*](qiskit.quantum_info.PauliList "qiskit.quantum_info.PauliList")) another Pauli operator.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) qubits to apply dot product on (default: None).
**Returns**
True if Paulis commute, False if they anti-commute.
**Return type**
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
</Function>
### compose
<Function id="qiskit.quantum_info.Pauli.compose" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L455-L489" signature="compose(other, qargs=None, front=False, inplace=False)">
Return the operator composition with another Pauli.
**Parameters**
* **other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) a Pauli object.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) Optional, qubits to apply dot product on (default: None).
* **front** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) If True compose using right operator multiplication, instead of left multiplication \[default: False].
* **inplace** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) If True update in-place (default: False).
**Returns**
The composed Pauli.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
<Admonition title="Note" type="note">
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while [`dot()`](#qiskit.quantum_info.Pauli.dot "qiskit.quantum_info.Pauli.dot") is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B.dot(A)` when `A` and `B` are of the same type.
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](#qiskit.quantum_info.Pauli.dot "qiskit.quantum_info.Pauli.dot") method `A.dot(B) == A.compose(B, front=True)`.
</Admonition>
</Function>
### conjugate
<Function id="qiskit.quantum_info.Pauli.conjugate" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L518-L519" signature="conjugate()">
Return the conjugate of each Pauli in the list.
</Function>
### copy
<Function id="qiskit.quantum_info.Pauli.copy" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/base_pauli.py#L61-L70" signature="copy()">
Make a deep copy of current operator.
</Function>
### delete
<Function id="qiskit.quantum_info.Pauli.delete" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L331-L357" signature="delete(qubits)">
Return a Pauli with qubits deleted.
**Parameters**
**qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *or*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) qubits to delete from Pauli.
**Returns**
the resulting Pauli with the specified qubits removed.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if ind is out of bounds for the array size or number of qubits.
</Function>
### dot
<Function id="qiskit.quantum_info.Pauli.dot" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L491-L503" signature="dot(other, qargs=None, inplace=False)">
Return the right multiplied operator self \* other.
**Parameters**
* **other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) an operator object.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) Optional, qubits to apply dot product on (default: None).
* **inplace** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) If True update in-place (default: False).
**Returns**
The operator self \* other.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
</Function>
### equiv
<Function id="qiskit.quantum_info.Pauli.equiv" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L254-L268" signature="equiv(other)">
Return True if Paulis are equivalent up to group phase.
**Parameters**
**other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) an operator object.
**Returns**
True if the Paulis are equivalent up to group phase.
**Return type**
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
</Function>
### evolve
<Function id="qiskit.quantum_info.Pauli.evolve" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L566-L605" signature="evolve(other, qargs=None, frame='h')">
Performs either Heisenberg (default) or Schrödinger picture evolution of the Pauli by a Clifford and returns the evolved Pauli.
Schrödinger picture evolution can be chosen by passing parameter `frame='s'`. This option yields a faster calculation.
Heisenberg picture evolves the Pauli as $P^\prime = C^\dagger.P.C$.
Schrödinger picture evolves the Pauli as $P^\prime = C.P.C^\dagger$.
**Parameters**
* **other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli") *or*[*Clifford*](qiskit.quantum_info.Clifford "qiskit.quantum_info.Clifford") *or*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")) The Clifford operator to evolve by.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) a list of qubits to apply the Clifford to.
* **frame** (*string*) `'h'` for Heisenberg (default) or `'s'` for
* **framework.** (*Schrödinger*)
**Returns**
the Pauli $C^\dagger.P.C$ (Heisenberg picture) or the Pauli $C.P.C^\dagger$ (Schrödinger picture).
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the Clifford number of qubits and qargs dont match.
</Function>
### expand
<Function id="qiskit.quantum_info.Pauli.expand" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L510-L513" signature="expand(other)">
Return the reverse-order tensor product with another Pauli.
**Parameters**
**other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) a Pauli object.
**Returns**
**the tensor product $b \otimes a$, where $a$**
is the current Pauli, and $b$ is the other Pauli.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
</Function>
### input\_dims
<Function id="qiskit.quantum_info.Pauli.input_dims" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L135-L137" signature="input_dims(qargs=None)">
Return tuple of input dimension for specified subsystems.
</Function>
### insert
<Function id="qiskit.quantum_info.Pauli.insert" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L359-L397" signature="insert(qubits, value)">
Insert a Pauli at specific qubit value.
**Parameters**
* **qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *or*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) qubits index to insert at.
* **value** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) value to insert.
**Returns**
the resulting Pauli with the entries inserted.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the insertion qubits are invalid.
</Function>
### inverse
<Function id="qiskit.quantum_info.Pauli.inverse" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L527-L529" signature="inverse()">
Return the inverse of the Pauli.
</Function>
### output\_dims
<Function id="qiskit.quantum_info.Pauli.output_dims" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L139-L141" signature="output_dims(qargs=None)">
Return tuple of output dimension for specified subsystems.
</Function>
### power
<Function id="qiskit.quantum_info.Pauli.power" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/mixins/group.py#L151-L171" signature="power(n)">
Return the compose of a operator with itself n times.
**Parameters**
**n** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the number of times to compose with self (n>0).
**Returns**
the n-times composed operator.
**Return type**
[Clifford](qiskit.quantum_info.Clifford "qiskit.quantum_info.Clifford")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
</Function>
### reshape
<Function id="qiskit.quantum_info.Pauli.reshape" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L106-L133" signature="reshape(input_dims=None, output_dims=None, num_qubits=None)">
Return a shallow copy with reshaped input and output subsystem dimensions.
**Parameters**
* **input\_dims** (*None or* [*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")) new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
* **output\_dims** (*None or* [*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")) new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
* **num\_qubits** (*None or* [*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) reshape to an N-qubit operator \[Default: None].
**Returns**
returns self with reshaped input and output dimensions.
**Return type**
BaseOperator
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
</Function>
### set\_truncation
<Function id="qiskit.quantum_info.Pauli.set_truncation" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L235-L246" signature="set_truncation(val)" modifiers="classmethod">
Set the max number of Pauli characters to display before truncation/
**Parameters**
**val** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the number of characters.
<Admonition title="Note" type="note">
Truncation will be disabled if the truncation value is set to 0.
</Admonition>
</Function>
### tensor
<Function id="qiskit.quantum_info.Pauli.tensor" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L505-L508" signature="tensor(other)">
Return the tensor product with another Pauli.
**Parameters**
**other** ([*Pauli*](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")) a Pauli object.
**Returns**
**the tensor product $a \otimes b$, where $a$**
is the current Pauli, and $b$ is the other Pauli.
**Return type**
[Pauli](#qiskit.quantum_info.Pauli "qiskit.quantum_info.Pauli")
<Admonition title="Note" type="note">
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
</Admonition>
</Function>
### to\_instruction
<Function id="qiskit.quantum_info.Pauli.to_instruction" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L432-L449" signature="to_instruction()">
Convert to Pauli circuit instruction.
</Function>
### to\_label
<Function id="qiskit.quantum_info.Pauli.to_label" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L407-L418" signature="to_label()">
Convert a Pauli to a string label.
<Admonition title="Note" type="note">
The difference between to\_label and `__str__()` is that the later will truncate the output for large numbers of qubits.
</Admonition>
**Returns**
the Pauli string label.
**Return type**
[str](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")
</Function>
### to\_matrix
<Function id="qiskit.quantum_info.Pauli.to_matrix" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L420-L430" signature="to_matrix(sparse=False)">
Convert to a Numpy array or sparse CSR matrix.
**Parameters**
**sparse** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) if True return sparse CSR matrices, otherwise return dense Numpy arrays (default: False).
**Returns**
The Pauli matrix.
**Return type**
array
</Function>
### transpose
<Function id="qiskit.quantum_info.Pauli.transpose" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/symplectic/pauli.py#L521-L522" signature="transpose()">
Return the transpose of each Pauli in the list.
</Function>
</Class>