354 lines
15 KiB
Plaintext
354 lines
15 KiB
Plaintext
---
|
||
title: Kraus (v1.2)
|
||
description: API reference for qiskit.quantum_info.Kraus in qiskit v1.2
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.quantum_info.Kraus
|
||
---
|
||
|
||
# Kraus
|
||
|
||
<Class id="qiskit.quantum_info.Kraus" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L37-L325" signature="qiskit.quantum_info.Kraus(data, input_dims=None, output_dims=None)" modifiers="class">
|
||
Bases: `QuantumChannel`
|
||
|
||
Kraus representation of a quantum channel.
|
||
|
||
For a quantum channel $\mathcal{E}$, the Kraus representation is given by a set of matrices $[A_0,...,A_{K-1}]$ such that the evolution of a [`DensityMatrix`](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix") $\rho$ is given by
|
||
|
||
$$
|
||
\mathcal{E}(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger
|
||
$$
|
||
|
||
A general operator map $\mathcal{G}$ can also be written using the generalized Kraus representation which is given by two sets of matrices $[A_0,...,A_{K-1}]$, $[B_0,...,A_{B-1}]$ such that
|
||
|
||
$$
|
||
\mathcal{G}(\rho) = \sum_{i=0}^{K-1} A_i \rho B_i^\dagger
|
||
$$
|
||
|
||
See reference \[1] for further details.
|
||
|
||
**References**
|
||
|
||
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015). [arXiv:1111.6950 \[quant-ph\]](https://arxiv.org/abs/1111.6950)
|
||
|
||
Initialize a quantum channel Kraus operator.
|
||
|
||
**Parameters**
|
||
|
||
* **data** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit") *|*[*circuit.instruction.Instruction*](qiskit.circuit.Instruction "qiskit.circuit.instruction.Instruction") *| BaseOperator | np.ndarray*) – data to initialize superoperator.
|
||
* **input\_dims** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)") *| None*) – the input subsystem dimensions.
|
||
* **output\_dims** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)") *| None*) – the output subsystem dimensions.
|
||
|
||
**Raises**
|
||
|
||
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") – if input data cannot be initialized as a list of Kraus matrices.
|
||
|
||
**Additional Information:**
|
||
|
||
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a list of Numpy arrays of shape $(2^N,\,2^N)$ qubit systems will be used. If the input does not correspond to an N-qubit channel, it will assign a single subsystem with dimension specified by the shape of the input.
|
||
|
||
## Attributes
|
||
|
||
### atol
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.atol" attributeValue="1e-08" />
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.data">
|
||
Return list of Kraus matrices for channel.
|
||
</Attribute>
|
||
|
||
### dim
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.dim">
|
||
Return tuple (input\_shape, output\_shape).
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.num_qubits">
|
||
Return the number of qubits if a N-qubit operator or None otherwise.
|
||
</Attribute>
|
||
|
||
### qargs
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.qargs">
|
||
Return the qargs for the operator.
|
||
</Attribute>
|
||
|
||
### rtol
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.rtol" attributeValue="1e-05" />
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.quantum_info.Kraus.settings">
|
||
Return settings.
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### adjoint
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.adjoint" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L216-L224" signature="adjoint()">
|
||
Return the adjoint quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix Hermitian conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the adjoint channel $\mathcal{{E}}^\dagger$ is $S_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### compose
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.compose" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L226-L256" signature="compose(other, qargs=None, front=False)">
|
||
Return the operator composition with another Kraus.
|
||
|
||
**Parameters**
|
||
|
||
* **other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) – a Kraus object.
|
||
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
|
||
* **front** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – If True compose using right operator multiplication, instead of left multiplication \[default: False].
|
||
|
||
**Returns**
|
||
|
||
The composed Kraus.
|
||
|
||
**Return type**
|
||
|
||
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
|
||
|
||
**Raises**
|
||
|
||
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
|
||
|
||
<Admonition title="Note" type="note">
|
||
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while `@` (equivalent to [`dot()`](#qiskit.quantum_info.Kraus.dot "qiskit.quantum_info.Kraus.dot")) is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B @ A == B.dot(A)` when `A` and `B` are of the same type.
|
||
|
||
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](#qiskit.quantum_info.Kraus.dot "qiskit.quantum_info.Kraus.dot") method `A.dot(B) == A.compose(B, front=True)`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### conjugate
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.conjugate" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L197-L204" signature="conjugate()">
|
||
Return the conjugate quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix complex conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the conjugate channel $\overline{{\mathcal{{E}}}}$ is $S_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### copy
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.copy" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L143-L145" signature="copy()">
|
||
Make a deep copy of current operator.
|
||
</Function>
|
||
|
||
### dot
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.dot" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/mixins/group.py#L133-L149" signature="dot(other, qargs=None)">
|
||
Return the right multiplied operator self \* other.
|
||
|
||
**Parameters**
|
||
|
||
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) – an operator object.
|
||
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
|
||
|
||
**Returns**
|
||
|
||
The right matrix multiplied Operator.
|
||
|
||
**Return type**
|
||
|
||
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
|
||
|
||
<Admonition title="Note" type="note">
|
||
The dot product can be obtained using the `@` binary operator. Hence `a.dot(b)` is equivalent to `a @ b`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### expand
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.expand" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L263-L266" signature="expand(other)">
|
||
Return the reverse-order tensor product with another Kraus.
|
||
|
||
**Parameters**
|
||
|
||
**other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) – a Kraus object.
|
||
|
||
**Returns**
|
||
|
||
**the tensor product $b \otimes a$, where $a$**
|
||
|
||
is the current Kraus, and $b$ is the other Kraus.
|
||
|
||
**Return type**
|
||
|
||
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
|
||
</Function>
|
||
|
||
### input\_dims
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.input_dims" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L135-L137" signature="input_dims(qargs=None)">
|
||
Return tuple of input dimension for specified subsystems.
|
||
</Function>
|
||
|
||
### is\_cp
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.is_cp" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L218-L221" signature="is_cp(atol=None, rtol=None)">
|
||
Test if Choi-matrix is completely-positive (CP)
|
||
|
||
**Return type**
|
||
|
||
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
|
||
</Function>
|
||
|
||
### is\_cptp
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.is_cptp" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L177-L188" signature="is_cptp(atol=None, rtol=None)">
|
||
Return True if completely-positive trace-preserving.
|
||
</Function>
|
||
|
||
### is\_tp
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.is_tp" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L213-L216" signature="is_tp(atol=None, rtol=None)">
|
||
Test if a channel is trace-preserving (TP)
|
||
|
||
**Return type**
|
||
|
||
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
|
||
</Function>
|
||
|
||
### is\_unitary
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.is_unitary" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L223-L229" signature="is_unitary(atol=None, rtol=None)">
|
||
Return True if QuantumChannel is a unitary channel.
|
||
|
||
**Return type**
|
||
|
||
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
|
||
</Function>
|
||
|
||
### output\_dims
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.output_dims" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L139-L141" signature="output_dims(qargs=None)">
|
||
Return tuple of output dimension for specified subsystems.
|
||
</Function>
|
||
|
||
### power
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.power" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L139-L174" signature="power(n)">
|
||
Return the power of the quantum channel.
|
||
|
||
**Parameters**
|
||
|
||
**n** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) – the power exponent.
|
||
|
||
**Returns**
|
||
|
||
the channel $\mathcal{{E}} ^n$.
|
||
|
||
**Return type**
|
||
|
||
[SuperOp](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp")
|
||
|
||
**Raises**
|
||
|
||
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") – if the input and output dimensions of the SuperOp are not equal.
|
||
|
||
<Admonition title="Note" type="note">
|
||
For non-positive or non-integer exponents the power is defined as the matrix power of the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{{E}}$, the SuperOp of the powered channel $\mathcal{{E}}^\n$ is $S_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### reshape
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.reshape" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/base_operator.py#L106-L133" signature="reshape(input_dims=None, output_dims=None, num_qubits=None)">
|
||
Return a shallow copy with reshaped input and output subsystem dimensions.
|
||
|
||
**Parameters**
|
||
|
||
* **input\_dims** (*None or* [*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")) – new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
|
||
* **output\_dims** (*None or* [*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")) – new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
|
||
* **num\_qubits** (*None or* [*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) – reshape to an N-qubit operator \[Default: None].
|
||
|
||
**Returns**
|
||
|
||
returns self with reshaped input and output dimensions.
|
||
|
||
**Return type**
|
||
|
||
BaseOperator
|
||
|
||
**Raises**
|
||
|
||
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
|
||
</Function>
|
||
|
||
### tensor
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.tensor" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L258-L261" signature="tensor(other)">
|
||
Return the tensor product with another Kraus.
|
||
|
||
**Parameters**
|
||
|
||
**other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) – a Kraus object.
|
||
|
||
**Returns**
|
||
|
||
**the tensor product $a \otimes b$, where $a$**
|
||
|
||
is the current Kraus, and $b$ is the other Kraus.
|
||
|
||
**Return type**
|
||
|
||
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
|
||
|
||
<Admonition title="Note" type="note">
|
||
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### to\_instruction
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.to_instruction" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L236-L265" signature="to_instruction()">
|
||
Convert to a Kraus or UnitaryGate circuit instruction.
|
||
|
||
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
|
||
|
||
**Returns**
|
||
|
||
A kraus instruction for the channel.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
|
||
**Raises**
|
||
|
||
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") – if input data is not an N-qubit CPTP quantum channel.
|
||
</Function>
|
||
|
||
### to\_operator
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.to_operator" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/quantum_channel.py#L231-L234" signature="to_operator()">
|
||
Try to convert channel to a unitary representation Operator.
|
||
|
||
**Return type**
|
||
|
||
[*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.operators.operator.Operator")
|
||
</Function>
|
||
|
||
### transpose
|
||
|
||
<Function id="qiskit.quantum_info.Kraus.transpose" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/operators/channel/kraus.py#L206-L214" signature="transpose()">
|
||
Return the transpose quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix transpose in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation, ie. for a channel $\mathcal{E}$, the SuperOp of the transpose channel $\mathcal{{E}}^T$ is $S_{mathcal{E}^T} = S_{\mathcal{E}}^T$.
|
||
</Admonition>
|
||
</Function>
|
||
</Class>
|
||
|