qiskit-documentation/docs/api/qiskit/1.2/qiskit.quantum_info.Density...

646 lines
27 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: DensityMatrix (v1.2)
description: API reference for qiskit.quantum_info.DensityMatrix in qiskit v1.2
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.quantum_info.DensityMatrix
---
# DensityMatrix
<Class id="qiskit.quantum_info.DensityMatrix" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L41-L845" signature="qiskit.quantum_info.DensityMatrix(data, dims=None)" modifiers="class">
Bases: `QuantumState`, `TolerancesMixin`
DensityMatrix class
Initialize a density matrix object.
**Parameters**
* **or** (*data (np.ndarray or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or matrix\_like or*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")) qiskit.circuit.Instruction): A statevector, quantum instruction or an object with a `to_operator` or `to_matrix` method from which the density matrix can be constructed. If a vector the density matrix is constructed as the projector of that vector. If a quantum instruction, the density matrix is constructed by assuming all qubits are initialized in the zero state.
* **dims** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *or*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)") *or*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) Optional. The subsystem dimension of the state (See additional information).
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if input data is not valid.
**Additional Information:**
The `dims` kwarg can be None, an integer, or an iterable of integers.
* `Iterable` the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
* `Int` or `None` the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
## Attributes
### atol
<Attribute id="qiskit.quantum_info.DensityMatrix.atol" attributeValue="1e-08" />
### data
<Attribute id="qiskit.quantum_info.DensityMatrix.data">
Return data.
</Attribute>
### dim
<Attribute id="qiskit.quantum_info.DensityMatrix.dim">
Return total state dimension.
</Attribute>
### num\_qubits
<Attribute id="qiskit.quantum_info.DensityMatrix.num_qubits">
Return the number of qubits if a N-qubit state or None otherwise.
</Attribute>
### rtol
<Attribute id="qiskit.quantum_info.DensityMatrix.rtol" attributeValue="1e-05" />
### settings
<Attribute id="qiskit.quantum_info.DensityMatrix.settings">
Return settings.
</Attribute>
## Methods
### conjugate
<Function id="qiskit.quantum_info.DensityMatrix.conjugate" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L212-L214" signature="conjugate()">
Return the conjugate of the density matrix.
</Function>
### copy
<Function id="qiskit.quantum_info.DensityMatrix.copy" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L74-L76" signature="copy()">
Make a copy of current operator.
</Function>
### dims
<Function id="qiskit.quantum_info.DensityMatrix.dims" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L70-L72" signature="dims(qargs=None)">
Return tuple of input dimension for specified subsystems.
</Function>
### draw
<Function id="qiskit.quantum_info.DensityMatrix.draw" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L136-L176" signature="draw(output=None, **drawer_args)">
Return a visualization of the Statevector.
**repr**: ASCII TextMatrix of the states `__repr__`.
**text**: ASCII TextMatrix that can be printed in the console.
**latex**: An IPython Latex object for displaying in Jupyter Notebooks.
**latex\_source**: Raw, uncompiled ASCII source to generate array using LaTeX.
**qsphere**: Matplotlib figure, rendering of density matrix using plot\_state\_qsphere().
**hinton**: Matplotlib figure, rendering of density matrix using plot\_state\_hinton().
**bloch**: Matplotlib figure, rendering of density matrix using plot\_bloch\_multivector().
**Parameters**
* **output** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) Select the output method to use for drawing the state. Valid choices are repr, text, latex, latex\_source, qsphere, hinton, or bloch. Default is repr. Default can be changed by adding the line `state_drawer = <default>` to `~/.qiskit/settings.conf` under `[default]`.
* **drawer\_args** Arguments to be passed directly to the relevant drawing function or constructor (TextMatrix(), array\_to\_latex(), plot\_state\_qsphere(), plot\_state\_hinton() or plot\_bloch\_multivector()). See the relevant function under qiskit.visualization for that functions documentation.
**Returns**
`matplotlib.Figure` or [`str`](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") or `TextMatrix` or `IPython.display.Latex`: Drawing of the Statevector.
**Raises**
[**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.13)") when an invalid output method is selected.
</Function>
### evolve
<Function id="qiskit.quantum_info.DensityMatrix.evolve" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L304-L343" signature="evolve(other, qargs=None)">
Evolve a quantum state by an operator.
**Parameters**
* **QuantumChannel** (*other (Operator or*) or Instruction or Circuit): The operator to evolve by.
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) a list of QuantumState subsystem positions to apply the operator on.
**Returns**
the output density matrix.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the operator dimension does not match the specified QuantumState subsystem dimensions.
</Function>
### expand
<Function id="qiskit.quantum_info.DensityMatrix.expand" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L247-L264" signature="expand(other)">
Return the tensor product state other ⊗ self.
**Parameters**
**other** ([*DensityMatrix*](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")) a quantum state object.
**Returns**
the tensor product state other ⊗ self.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if other is not a quantum state.
</Function>
### expectation\_value
<Function id="qiskit.quantum_info.DensityMatrix.expectation_value" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L400-L421" signature="expectation_value(oper, qargs=None)">
Compute the expectation value of an operator.
**Parameters**
* **oper** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) an operator to evaluate expval.
* **qargs** (*None or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) subsystems to apply the operator on.
**Returns**
the expectation value.
**Return type**
[complex](https://docs.python.org/3/library/functions.html#complex "(in Python v3.13)")
</Function>
### from\_instruction
<Function id="qiskit.quantum_info.DensityMatrix.from_instruction" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L600-L627" signature="from_instruction(instruction)" modifiers="classmethod">
Return the output density matrix of an instruction.
The statevector is initialized in the state $|{0,\ldots,0}\rangle$ of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.
**Parameters**
**instruction** ([*qiskit.circuit.Instruction*](qiskit.circuit.Instruction "qiskit.circuit.Instruction") *or*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")) instruction or circuit
**Returns**
the final density matrix.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the instruction contains invalid instructions for density matrix simulation.
</Function>
### from\_int
<Function id="qiskit.quantum_info.DensityMatrix.from_int" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L572-L598" signature="from_int(i, dims)" modifiers="static">
Return a computational basis state density matrix.
**Parameters**
* **i** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the basis state element.
* **dims** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *or*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)") *or*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) The subsystem dimensions of the statevector (See additional information).
**Returns**
The computational basis state $|i\rangle\!\langle i|$.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Additional Information:**
The `dims` kwarg can be an integer or an iterable of integers.
* `Iterable` the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
* `Int` the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.
</Function>
### from\_label
<Function id="qiskit.quantum_info.DensityMatrix.from_label" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L536-L570" signature="from_label(label)" modifiers="classmethod">
Return a tensor product of Pauli X,Y,Z eigenstates.
| Label | Statevector |
| ----- | ----------------------------------------------------------- |
| `"0"` | $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ |
| `"1"` | $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ |
| `"+"` | $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ |
| `"-"` | $\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ |
| `"r"` | $\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$ |
| `"l"` | $\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ |
**Parameters**
**label** (*string*) a eigenstate string ket label (see table for allowed values).
**Returns**
The N-qubit basis state density matrix.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the label contains invalid characters, or the length of the label is larger than an explicitly specified num\_qubits.
</Function>
### is\_valid
<Function id="qiskit.quantum_info.DensityMatrix.is_valid" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L192-L205" signature="is_valid(atol=None, rtol=None)">
Return True if trace 1 and positive semidefinite.
</Function>
### measure
<Function id="qiskit.quantum_info.DensityMatrix.measure" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L306-L341" signature="measure(qargs=None)">
Measure subsystems and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the [`seed()`](#qiskit.quantum_info.DensityMatrix.seed "qiskit.quantum_info.DensityMatrix.seed") method.
**Parameters**
**qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
**Returns**
**the pair `(outcome, state)` where `outcome` is the**
measurement outcome string label, and `state` is the collapsed post-measurement state for the corresponding outcome.
**Return type**
[tuple](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.13)")
</Function>
### partial\_transpose
<Function id="qiskit.quantum_info.DensityMatrix.partial_transpose" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L828-L845" signature="partial_transpose(qargs)">
Return partially transposed density matrix.
**Parameters**
**qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) The subsystems to be transposed.
**Returns**
The partially transposed density matrix.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
</Function>
### probabilities
<Function id="qiskit.quantum_info.DensityMatrix.probabilities" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L423-L503" signature="probabilities(qargs=None, decimals=None)">
Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
**Parameters**
* **qargs** (*None or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) subsystems to return probabilities for, if None return for all subsystems (Default: None).
* **decimals** (*None or* [*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the number of decimal places to round values. If None no rounding is done (Default: None).
**Returns**
The Numpy vector array of probabilities.
**Return type**
np.array
**Examples**
Consider a 2-qubit product state $\rho=\rho_1\otimes\rho_0$ with $\rho_1=|+\rangle\!\langle+|$, $\rho_0=|0\rangle\!\langle0|$.
```python
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('+0')
# Probabilities for measuring both qubits
probs = rho.probabilities()
print('probs: {}'.format(probs))
# Probabilities for measuring only qubit-0
probs_qubit_0 = rho.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))
# Probabilities for measuring only qubit-1
probs_qubit_1 = rho.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
```
```python
probs: [0.5 0. 0.5 0. ]
Qubit-0 probs: [1. 0.]
Qubit-1 probs: [0.5 0.5]
```
We can also permute the order of qubits in the `qargs` list to change the qubit position in the probabilities output
```python
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('+0')
# Probabilities for measuring both qubits
probs = rho.probabilities([0, 1])
print('probs: {}'.format(probs))
# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = rho.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
```
```python
probs: [0.5 0. 0.5 0. ]
Swapped probs: [0.5 0.5 0. 0. ]
```
</Function>
### probabilities\_dict
<Function id="qiskit.quantum_info.DensityMatrix.probabilities_dict" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L220-L244" signature="probabilities_dict(qargs=None, decimals=None)">
Return the subsystem measurement probability dictionary.
Measurement probabilities are with respect to measurement in the computation (diagonal) basis.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
**Parameters**
* **qargs** (*None or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) subsystems to return probabilities for, if None return for all subsystems (Default: None).
* **decimals** (*None or* [*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the number of decimal places to round values. If None no rounding is done (Default: None).
**Returns**
The measurement probabilities in dict (ket) form.
**Return type**
[dict](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.13)")
</Function>
### purity
<Function id="qiskit.quantum_info.DensityMatrix.purity" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L220-L226" signature="purity()">
Return the purity of the quantum state.
</Function>
### reset
<Function id="qiskit.quantum_info.DensityMatrix.reset" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L505-L534" signature="reset(qargs=None)">
Reset state or subsystems to the 0-state.
**Parameters**
**qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)") *or None*) subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).
**Returns**
the reset state.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Additional Information:**
If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform evolution by the reset [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") of the reset subsystems.
</Function>
### reverse\_qargs
<Function id="qiskit.quantum_info.DensityMatrix.reverse_qargs" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L345-L365" signature="reverse_qargs()">
Return a DensityMatrix with reversed subsystem ordering.
For a tensor product state this is equivalent to reversing the order of tensor product subsystems. For a density matrix $\rho = \rho_{n-1} \otimes ... \otimes \rho_0$ the returned state will be $\rho_0 \otimes ... \otimes \rho_{n-1}$.
**Returns**
the state with reversed subsystem order.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
</Function>
### sample\_counts
<Function id="qiskit.quantum_info.DensityMatrix.sample_counts" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L277-L304" signature="sample_counts(shots, qargs=None)">
Sample a dict of qubit measurement outcomes in the computational basis.
**Parameters**
* **shots** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) number of samples to generate.
* **qargs** (*None or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
**Returns**
sampled counts dictionary.
**Return type**
[Counts](qiskit.result.Counts "qiskit.result.Counts")
Additional Information:
> This function *samples* measurement outcomes using the measure [`probabilities()`](#qiskit.quantum_info.DensityMatrix.probabilities "qiskit.quantum_info.DensityMatrix.probabilities") for the current state and qargs. It does not actually implement the measurement so the current state is not modified.
>
> The seed for random number generator used for sampling can be set to a fixed value by using the stats [`seed()`](#qiskit.quantum_info.DensityMatrix.seed "qiskit.quantum_info.DensityMatrix.seed") method.
</Function>
### sample\_memory
<Function id="qiskit.quantum_info.DensityMatrix.sample_memory" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L246-L275" signature="sample_memory(shots, qargs=None)">
Sample a list of qubit measurement outcomes in the computational basis.
**Parameters**
* **shots** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) number of samples to generate.
* **qargs** (*None or* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")) subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).
**Returns**
list of sampled counts if the order sampled.
**Return type**
np.array
Additional Information:
> This function *samples* measurement outcomes using the measure [`probabilities()`](#qiskit.quantum_info.DensityMatrix.probabilities "qiskit.quantum_info.DensityMatrix.probabilities") for the current state and qargs. It does not actually implement the measurement so the current state is not modified.
>
> The seed for random number generator used for sampling can be set to a fixed value by using the stats [`seed()`](#qiskit.quantum_info.DensityMatrix.seed "qiskit.quantum_info.DensityMatrix.seed") method.
</Function>
### seed
<Function id="qiskit.quantum_info.DensityMatrix.seed" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/quantum_state.py#L78-L85" signature="seed(value=None)">
Set the seed for the quantum state RNG.
</Function>
### tensor
<Function id="qiskit.quantum_info.DensityMatrix.tensor" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L228-L245" signature="tensor(other)">
Return the tensor product state self ⊗ other.
**Parameters**
**other** ([*DensityMatrix*](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")) a quantum state object.
**Returns**
the tensor product operator self ⊗ other.
**Return type**
[DensityMatrix](#qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if other is not a quantum state.
</Function>
### to\_dict
<Function id="qiskit.quantum_info.DensityMatrix.to_dict" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L629-L707" signature="to_dict(decimals=None)">
Convert the density matrix to dictionary form.
This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.
**Parameters**
**decimals** (*None or* [*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) the number of decimal places to round values. If None no rounding is done (Default: None).
**Returns**
the dictionary form of the DensityMatrix.
**Return type**
[dict](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.13)")
**Examples**
The ket-form of a 2-qubit density matrix $rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|$
```python
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('-0')
print(rho.to_dict())
```
```python
{
'00|00': (0.4999999999999999+0j),
'10|00': (-0.4999999999999999-0j),
'00|10': (-0.4999999999999999+0j),
'10|10': (0.4999999999999999+0j)
}
```
For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system
```python
import numpy as np
from qiskit.quantum_info import DensityMatrix
mat = np.zeros((9, 9))
mat[0, 0] = 0.25
mat[3, 3] = 0.25
mat[6, 6] = 0.25
mat[-1, -1] = 0.25
rho = DensityMatrix(mat, dims=(3, 3))
print(rho.to_dict())
```
```python
{'00|00': (0.25+0j), '10|10': (0.25+0j), '20|20': (0.25+0j), '22|22': (0.25+0j)}
```
For large subsystem dimensions delimiters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.
```python
import numpy as np
from qiskit.quantum_info import DensityMatrix
mat = np.zeros((2 * 10, 2 * 10))
mat[0, 0] = 0.5
mat[-1, -1] = 0.5
rho = DensityMatrix(mat, dims=(2, 10))
print(rho.to_dict())
```
```python
{'00|00': (0.5+0j), '91|91': (0.5+0j)}
```
</Function>
### to\_operator
<Function id="qiskit.quantum_info.DensityMatrix.to_operator" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L207-L210" signature="to_operator()">
Convert to Operator
**Return type**
[*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.operators.operator.Operator")
</Function>
### to\_statevector
<Function id="qiskit.quantum_info.DensityMatrix.to_statevector" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L796-L826" signature="to_statevector(atol=None, rtol=None)">
Return a statevector from a pure density matrix.
**Parameters**
* **atol** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) Absolute tolerance for checking operation validity.
* **rtol** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) Relative tolerance for checking operation validity.
**Returns**
**The pure density matrixs corresponding statevector.**
Corresponds to the eigenvector of the only non-zero eigenvalue.
**Return type**
[Statevector](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") if the state is not pure.
</Function>
### trace
<Function id="qiskit.quantum_info.DensityMatrix.trace" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/quantum_info/states/densitymatrix.py#L216-L218" signature="trace()">
Return the trace of the density matrix.
</Function>
</Class>