qiskit-documentation/docs/api/qiskit/1.2/qiskit.circuit.library.Unit...

297 lines
12 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: UnitaryOverlap (v1.2)
description: API reference for qiskit.circuit.library.UnitaryOverlap in qiskit v1.2
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.UnitaryOverlap
---
# UnitaryOverlap
<Class id="qiskit.circuit.library.UnitaryOverlap" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/overlap.py#L21-L106" signature="qiskit.circuit.library.UnitaryOverlap(unitary1, unitary2, prefix1='p1', prefix2='p2', insert_barrier=False)" modifiers="class">
Bases: [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
Circuit that returns the overlap between two unitaries $U_2^{\dag} U_1$.
The input quantum circuits must represent unitary operations, since they must be invertible. If the inputs will have parameters, they are replaced by [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector")s with names “p1” (for circuit `unitary1`) and “p2” (for circuit `unitary_2`) in the output circuit.
This circuit is usually employed in computing the fidelity:
$$
\left|\langle 0| U_2^{\dag} U_1|0\rangle\right|^{2}
$$
by computing the probability of being in the all-zeros bit-string, or equivalently, the expectation value of projector $|0\rangle\langle 0|$.
Example:
```python
import numpy as np
from qiskit.circuit.library import EfficientSU2, UnitaryOverlap
from qiskit.primitives import Sampler
# get two circuit to prepare states of which we comput the overlap
circuit = EfficientSU2(2, reps=1)
unitary1 = circuit.assign_parameters(np.random.random(circuit.num_parameters))
unitary2 = circuit.assign_parameters(np.random.random(circuit.num_parameters))
# create the overlap circuit
overlap = UnitaryOverap(unitary1, unitary2)
# sample from the overlap
sampler = Sampler(options={"shots": 100})
result = sampler.run(overlap).result()
# the fidelity is the probability to measure 0
fidelity = result.quasi_dists[0].get(0, 0)
```
**Parameters**
* **unitary1** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")) Unitary acting on the ket vector.
* **unitary2** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")) Unitary whose inverse operates on the bra vector.
* **prefix1** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) The name of the parameter vector associated to `unitary1`, if it is parameterized. Defaults to `"p1"`.
* **prefix2** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) The name of the parameter vector associated to `unitary2`, if it is parameterized. Defaults to `"p2"`.
* **insert\_barrier** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) Whether to insert a barrier between the two unitaries.
**Raises**
* [**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") Number of qubits in `unitary1` and `unitary2` does not match.
* [**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") Inputs contain measurements and/or resets.
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.UnitaryOverlap.ancillas">
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.UnitaryOverlap.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.UnitaryOverlap.clbits">
A list of `Clbit`s in the order that they were added. You should not mutate this.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.UnitaryOverlap.data">
The circuit data (instructions and context).
**Returns**
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
**Return type**
QuantumCircuitData
</Attribute>
### global\_phase
<Attribute id="qiskit.circuit.library.UnitaryOverlap.global_phase">
The global phase of the current circuit scope in radians.
</Attribute>
### instances
<Attribute id="qiskit.circuit.library.UnitaryOverlap.instances" attributeValue="186" />
### layout
<Attribute id="qiskit.circuit.library.UnitaryOverlap.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.UnitaryOverlap.metadata">
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_captured\_vars
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_captured_vars">
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.UnitaryOverlap.num_input_vars "qiskit.circuit.library.UnitaryOverlap.num_input_vars") must be zero.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_clbits">
Return number of classical bits.
</Attribute>
### num\_declared\_vars
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_declared_vars">
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the `iter_declared_vars()` iterable.
</Attribute>
### num\_input\_vars
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_input_vars">
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.UnitaryOverlap.num_captured_vars "qiskit.circuit.library.UnitaryOverlap.num_captured_vars") must be zero.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_parameters">
The number of parameter objects in the circuit.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_qubits">
Return number of qubits.
</Attribute>
### num\_vars
<Attribute id="qiskit.circuit.library.UnitaryOverlap.num_vars">
The number of real-time classical variables in the circuit.
This is the length of the `iter_vars()` iterable.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.UnitaryOverlap.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") When circuit is not scheduled.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.UnitaryOverlap.parameters">
The parameters defined in the circuit.
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
**Examples**
The snippet below shows that insertion order of parameters does not matter.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```
**Returns**
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.UnitaryOverlap.prefix" attributeValue="'circuit'" />
### qubits
<Attribute id="qiskit.circuit.library.UnitaryOverlap.qubits">
A list of `Qubit`s in the order that they were added. You should not mutate this.
</Attribute>
### name
<Attribute id="qiskit.circuit.library.UnitaryOverlap.name" attributeTypeHint="str">
A human-readable name for the circuit.
</Attribute>
### qregs
<Attribute id="qiskit.circuit.library.UnitaryOverlap.qregs" attributeTypeHint="list[QuantumRegister]">
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
</Attribute>
### cregs
<Attribute id="qiskit.circuit.library.UnitaryOverlap.cregs" attributeTypeHint="list[ClassicalRegister]">
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.UnitaryOverlap.duration" attributeTypeHint="int | float | None">
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.UnitaryOverlap.unit "qiskit.circuit.library.UnitaryOverlap.unit").
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.UnitaryOverlap.unit">
The unit that [`duration`](#qiskit.circuit.library.UnitaryOverlap.duration "qiskit.circuit.library.UnitaryOverlap.duration") is specified in.
</Attribute>
</Class>