341 lines
13 KiB
Plaintext
341 lines
13 KiB
Plaintext
---
|
||
title: PolynomialPauliRotations (v1.2)
|
||
description: API reference for qiskit.circuit.library.PolynomialPauliRotations in qiskit v1.2
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.PolynomialPauliRotations
|
||
---
|
||
|
||
# PolynomialPauliRotations
|
||
|
||
<Class id="qiskit.circuit.library.PolynomialPauliRotations" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/polynomial_pauli_rotations.py#L134-L335" signature="qiskit.circuit.library.PolynomialPauliRotations(num_state_qubits=None, coeffs=None, basis='Y', name='poly')" modifiers="class">
|
||
Bases: [`FunctionalPauliRotations`](qiskit.circuit.library.FunctionalPauliRotations "qiskit.circuit.library.arithmetic.functional_pauli_rotations.FunctionalPauliRotations")
|
||
|
||
A circuit implementing polynomial Pauli rotations.
|
||
|
||
For a polynomial $p(x)$, a basis state $|i\rangle$ and a target qubit $|0\rangle$ this operator acts as:
|
||
|
||
$$
|
||
|i\rangle |0\rangle \mapsto \cos\left(\frac{p(i)}{2}\right) |i\rangle |0\rangle
|
||
+ \sin\left(\frac{p(i)}{2}\right) |i\rangle |1\rangle
|
||
$$
|
||
|
||
Let n be the number of qubits representing the state, d the degree of p(x) and q\_i the qubits, where q\_0 is the least significant qubit. Then for
|
||
|
||
$$
|
||
x = \sum_{i=0}^{n-1} 2^i q_i,
|
||
$$
|
||
|
||
we can write
|
||
|
||
$$
|
||
p(x) = \sum_{j=0}^{j=d} c_j x^j
|
||
$$
|
||
|
||
where $c$ are the input coefficients, `coeffs`.
|
||
|
||
Prepare an approximation to a state with amplitudes specified by a polynomial.
|
||
|
||
**Parameters**
|
||
|
||
* **num\_state\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) – The number of qubits representing the state.
|
||
* **coeffs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*] | None*) – The coefficients of the polynomial. `coeffs[i]` is the coefficient of the i-th power of x. Defaults to linear: \[0, 1].
|
||
* **basis** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) – The type of Pauli rotation (‘X’, ‘Y’, ‘Z’).
|
||
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) – The name of the circuit.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.ancillas">
|
||
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### basis
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.basis">
|
||
The kind of Pauli rotation to be used.
|
||
|
||
Set the basis to ‘X’, ‘Y’ or ‘Z’ for controlled-X, -Y, or -Z rotations respectively.
|
||
|
||
**Returns**
|
||
|
||
The kind of Pauli rotation used in controlled rotation.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.clbits">
|
||
A list of `Clbit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### coeffs
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.coeffs">
|
||
The coefficients of the polynomial.
|
||
|
||
`coeffs[i]` is the coefficient of the i-th power of the function input $x$, that means that the rotation angles are based on the coefficients value, following the formula
|
||
|
||
$$
|
||
c_j x^j , j=0, ..., d
|
||
$$
|
||
|
||
where $d$ is the degree of the polynomial $p(x)$ and $c$ are the coefficients `coeffs`.
|
||
|
||
**Returns**
|
||
|
||
The coefficients of the polynomial.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.data">
|
||
The circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### degree
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.degree">
|
||
Return the degree of the polynomial, equals to the number of coefficients minus 1.
|
||
|
||
**Returns**
|
||
|
||
The degree of the polynomial. If the coefficients have not been set, return 0.
|
||
</Attribute>
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.global_phase">
|
||
The global phase of the current circuit scope in radians.
|
||
</Attribute>
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.instances" attributeValue="259" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.metadata">
|
||
Arbitrary user-defined metadata for the circuit.
|
||
|
||
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
|
||
</Attribute>
|
||
|
||
### num\_ancilla\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_ancilla_qubits">
|
||
The minimum number of ancilla qubits in the circuit.
|
||
|
||
**Returns**
|
||
|
||
The minimal number of ancillas required.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_captured\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_captured_vars">
|
||
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
|
||
|
||
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.PolynomialPauliRotations.num_input_vars "qiskit.circuit.library.PolynomialPauliRotations.num_input_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_declared\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_declared_vars">
|
||
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
|
||
|
||
This is the length of the `iter_declared_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### num\_input\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_input_vars">
|
||
The number of real-time classical variables in the circuit marked as circuit inputs.
|
||
|
||
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.PolynomialPauliRotations.num_captured_vars "qiskit.circuit.library.PolynomialPauliRotations.num_captured_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_qubits">
|
||
Return number of qubits.
|
||
</Attribute>
|
||
|
||
### num\_state\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_state_qubits">
|
||
The number of state qubits representing the state $|x\rangle$.
|
||
|
||
**Returns**
|
||
|
||
The number of state qubits.
|
||
</Attribute>
|
||
|
||
### num\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.num_vars">
|
||
The number of real-time classical variables in the circuit.
|
||
|
||
This is the length of the `iter_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.prefix" attributeValue="'circuit'" />
|
||
|
||
### qregs
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.qregs" attributeTypeHint="list[QuantumRegister]">
|
||
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.qubits">
|
||
A list of `Qubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.name" attributeTypeHint="str">
|
||
A human-readable name for the circuit.
|
||
</Attribute>
|
||
|
||
### cregs
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.cregs" attributeTypeHint="list[ClassicalRegister]">
|
||
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.duration" attributeTypeHint="int | float | None">
|
||
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.PolynomialPauliRotations.unit "qiskit.circuit.library.PolynomialPauliRotations.unit").
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.circuit.library.PolynomialPauliRotations.unit">
|
||
The unit that [`duration`](#qiskit.circuit.library.PolynomialPauliRotations.duration "qiskit.circuit.library.PolynomialPauliRotations.duration") is specified in.
|
||
</Attribute>
|
||
</Class>
|
||
|