454 lines
23 KiB
Plaintext
454 lines
23 KiB
Plaintext
---
|
||
title: EfficientSU2 (v1.2)
|
||
description: API reference for qiskit.circuit.library.EfficientSU2 in qiskit v1.2
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.EfficientSU2
|
||
---
|
||
|
||
# EfficientSU2
|
||
|
||
<Class id="qiskit.circuit.library.EfficientSU2" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/n_local/efficient_su2.py#L29-L164" signature="qiskit.circuit.library.EfficientSU2(num_qubits=None, su2_gates=None, entanglement='reverse_linear', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='θ', insert_barriers=False, initial_state=None, name='EfficientSU2', flatten=None)" modifiers="class">
|
||
Bases: [`TwoLocal`](qiskit.circuit.library.TwoLocal "qiskit.circuit.library.n_local.two_local.TwoLocal")
|
||
|
||
The hardware efficient SU(2) 2-local circuit.
|
||
|
||
The `EfficientSU2` circuit consists of layers of single qubit operations spanned by SU(2) and $CX$ entanglements. This is a heuristic pattern that can be used to prepare trial wave functions for variational quantum algorithms or classification circuit for machine learning.
|
||
|
||
SU(2) stands for special unitary group of degree 2, its elements are $2 \times 2$ unitary matrices with determinant 1, such as the Pauli rotation gates.
|
||
|
||
On 3 qubits and using the Pauli $Y$ and $Z$ su2\_gates as single qubit gates, the hardware efficient SU(2) circuit is represented by:
|
||
|
||
```python
|
||
┌──────────┐┌──────────┐ ░ ░ ░ ┌───────────┐┌───────────┐
|
||
┤ RY(θ[0]) ├┤ RZ(θ[3]) ├─░────────■───░─ ... ─░─┤ RY(θ[12]) ├┤ RZ(θ[15]) ├
|
||
├──────────┤├──────────┤ ░ ┌─┴─┐ ░ ░ ├───────────┤├───────────┤
|
||
┤ RY(θ[1]) ├┤ RZ(θ[4]) ├─░───■──┤ X ├─░─ ... ─░─┤ RY(θ[13]) ├┤ RZ(θ[16]) ├
|
||
├──────────┤├──────────┤ ░ ┌─┴─┐└───┘ ░ ░ ├───────────┤├───────────┤
|
||
┤ RY(θ[2]) ├┤ RZ(θ[5]) ├─░─┤ X ├──────░─ ... ─░─┤ RY(θ[14]) ├┤ RZ(θ[17]) ├
|
||
└──────────┘└──────────┘ ░ └───┘ ░ ░ └───────────┘└───────────┘
|
||
```
|
||
|
||
See [`RealAmplitudes`](qiskit.circuit.library.RealAmplitudes "qiskit.circuit.library.RealAmplitudes") for more detail on the possible arguments and options such as skipping unentanglement qubits, which apply here too.
|
||
|
||
**Examples**
|
||
|
||
```python
|
||
>>> circuit = EfficientSU2(3, reps=1)
|
||
>>> print(circuit)
|
||
┌──────────┐┌──────────┐ ┌──────────┐┌──────────┐
|
||
q_0: ┤ RY(θ[0]) ├┤ RZ(θ[3]) ├──■────■──┤ RY(θ[6]) ├┤ RZ(θ[9]) ├─────────────
|
||
├──────────┤├──────────┤┌─┴─┐ │ └──────────┘├──────────┤┌───────────┐
|
||
q_1: ┤ RY(θ[1]) ├┤ RZ(θ[4]) ├┤ X ├──┼───────■──────┤ RY(θ[7]) ├┤ RZ(θ[10]) ├
|
||
├──────────┤├──────────┤└───┘┌─┴─┐ ┌─┴─┐ ├──────────┤├───────────┤
|
||
q_2: ┤ RY(θ[2]) ├┤ RZ(θ[5]) ├─────┤ X ├───┤ X ├────┤ RY(θ[8]) ├┤ RZ(θ[11]) ├
|
||
└──────────┘└──────────┘ └───┘ └───┘ └──────────┘└───────────┘
|
||
```
|
||
|
||
```python
|
||
>>> ansatz = EfficientSU2(4, su2_gates=['rx', 'y'], entanglement='circular', reps=1)
|
||
>>> qc = QuantumCircuit(4) # create a circuit and append the RY variational form
|
||
>>> qc.compose(ansatz, inplace=True)
|
||
>>> qc.draw()
|
||
┌──────────┐┌───┐┌───┐ ┌──────────┐ ┌───┐
|
||
q_0: ┤ RX(θ[0]) ├┤ Y ├┤ X ├──■──┤ RX(θ[4]) ├───┤ Y ├─────────────────────
|
||
├──────────┤├───┤└─┬─┘┌─┴─┐└──────────┘┌──┴───┴───┐ ┌───┐
|
||
q_1: ┤ RX(θ[1]) ├┤ Y ├──┼──┤ X ├─────■──────┤ RX(θ[5]) ├───┤ Y ├─────────
|
||
├──────────┤├───┤ │ └───┘ ┌─┴─┐ └──────────┘┌──┴───┴───┐┌───┐
|
||
q_2: ┤ RX(θ[2]) ├┤ Y ├──┼──────────┤ X ├─────────■──────┤ RX(θ[6]) ├┤ Y ├
|
||
├──────────┤├───┤ │ └───┘ ┌─┴─┐ ├──────────┤├───┤
|
||
q_3: ┤ RX(θ[3]) ├┤ Y ├──■──────────────────────┤ X ├────┤ RX(θ[7]) ├┤ Y ├
|
||
└──────────┘└───┘ └───┘ └──────────┘└───┘
|
||
```
|
||
|
||
**Parameters**
|
||
|
||
* **num\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) – The number of qubits of the EfficientSU2 circuit.
|
||
* **reps** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) – Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.
|
||
* **su2\_gates** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") *|*[*type*](https://docs.python.org/3/library/functions.html#type "(in Python v3.13)") *|*[*qiskit.circuit.Instruction*](qiskit.circuit.Instruction "qiskit.circuit.Instruction") *|*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit") *|*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") *|*[*type*](https://docs.python.org/3/library/functions.html#type "(in Python v3.13)") *|*[*qiskit.circuit.Instruction*](qiskit.circuit.Instruction "qiskit.circuit.Instruction") *|*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")*] | None*) – The SU(2) single qubit gates to apply in single qubit gate layers. If only one gate is provided, the same gate is applied to each qubit. If a list of gates is provided, all gates are applied to each qubit in the provided order.
|
||
* **entanglement** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") *|*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*]] | Callable\[\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*],* [*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.13)")*\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*]]*) – Specifies the entanglement structure. Can be a string (‘full’, ‘linear’, ‘reverse\_linear’, ‘pairwise’, ‘circular’, or ‘sca’), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. Defaults to ‘reverse\_linear’ entanglement. Note that ‘reverse\_linear’ entanglement provides the same unitary as ‘full’ with fewer entangling gates. See the Examples section of [`TwoLocal`](qiskit.circuit.library.TwoLocal "qiskit.circuit.library.TwoLocal") for more detail.
|
||
* **initial\_state** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit") *| None*) – A QuantumCircuit object to prepend to the circuit.
|
||
* **skip\_unentangled\_qubits** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
|
||
* **skip\_final\_rotation\_layer** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – If False, a rotation layer is added at the end of the ansatz. If True, no rotation layer is added.
|
||
* **parameter\_prefix** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) – The parameterized gates require a parameter to be defined, for which we use [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector").
|
||
* **insert\_barriers** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – If True, barriers are inserted in between each layer. If False, no barriers are inserted.
|
||
* **flatten** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)") *| None*) – Set this to `True` to output a flat circuit instead of nesting it inside multiple layers of gate objects. By default currently the contents of the output circuit will be wrapped in nested objects for cleaner visualization. However, if you’re using this circuit for anything besides visualization its **strongly** recommended to set this flag to `True` to avoid a large performance overhead for parameter binding.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.ancillas">
|
||
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.clbits">
|
||
A list of `Clbit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.data">
|
||
The circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### entanglement
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.entanglement">
|
||
Get the entanglement strategy.
|
||
|
||
**Returns**
|
||
|
||
The entanglement strategy, see `get_entangler_map()` for more detail on how the format is interpreted.
|
||
</Attribute>
|
||
|
||
### entanglement\_blocks
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.entanglement_blocks">
|
||
The blocks in the entanglement layers.
|
||
|
||
**Returns**
|
||
|
||
The blocks in the entanglement layers.
|
||
</Attribute>
|
||
|
||
### flatten
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.flatten">
|
||
Returns whether the circuit is wrapped in nested gates/instructions or flattened.
|
||
</Attribute>
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.global_phase">
|
||
The global phase of the current circuit scope in radians.
|
||
</Attribute>
|
||
|
||
### initial\_state
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.initial_state">
|
||
Return the initial state that is added in front of the n-local circuit.
|
||
|
||
**Returns**
|
||
|
||
The initial state.
|
||
</Attribute>
|
||
|
||
### insert\_barriers
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.insert_barriers">
|
||
If barriers are inserted in between the layers or not.
|
||
|
||
**Returns**
|
||
|
||
`True`, if barriers are inserted in between the layers, `False` if not.
|
||
</Attribute>
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.instances" attributeValue="160" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.metadata">
|
||
Arbitrary user-defined metadata for the circuit.
|
||
|
||
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_captured\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_captured_vars">
|
||
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
|
||
|
||
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.EfficientSU2.num_input_vars "qiskit.circuit.library.EfficientSU2.num_input_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_declared\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_declared_vars">
|
||
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
|
||
|
||
This is the length of the `iter_declared_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### num\_input\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_input_vars">
|
||
The number of real-time classical variables in the circuit marked as circuit inputs.
|
||
|
||
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.EfficientSU2.num_captured_vars "qiskit.circuit.library.EfficientSU2.num_captured_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_layers
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_layers">
|
||
Return the number of layers in the n-local circuit.
|
||
|
||
**Returns**
|
||
|
||
The number of layers in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_parameters\_settable
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_parameters_settable">
|
||
The number of total parameters that can be set to distinct values.
|
||
|
||
This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from `num_parameters` which counts the number of unique [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects currently in the circuit.
|
||
|
||
**Returns**
|
||
|
||
The number of parameters originally available in the circuit.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This quantity does not require the circuit to be built yet.
|
||
</Admonition>
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_qubits">
|
||
Returns the number of qubits in this circuit.
|
||
|
||
**Returns**
|
||
|
||
The number of qubits.
|
||
</Attribute>
|
||
|
||
### num\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.num_vars">
|
||
The number of real-time classical variables in the circuit.
|
||
|
||
This is the length of the `iter_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### ordered\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.ordered_parameters">
|
||
The parameters used in the underlying circuit.
|
||
|
||
This includes float values and duplicates.
|
||
|
||
**Examples**
|
||
|
||
```python
|
||
>>> # prepare circuit ...
|
||
>>> print(nlocal)
|
||
┌───────┐┌──────────┐┌──────────┐┌──────────┐
|
||
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
|
||
└───────┘└──────────┘└──────────┘└──────────┘
|
||
>>> nlocal.parameters
|
||
{Parameter(θ[1]), Parameter(θ[3])}
|
||
>>> nlocal.ordered_parameters
|
||
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The parameters objects used in the circuit.
|
||
</Attribute>
|
||
|
||
### parameter\_bounds
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.parameter_bounds">
|
||
Return the parameter bounds.
|
||
|
||
**Returns**
|
||
|
||
The parameter bounds.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### preferred\_init\_points
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.preferred_init_points">
|
||
The initial points for the parameters. Can be stored as initial guess in optimization.
|
||
|
||
**Returns**
|
||
|
||
The initial values for the parameters, or None, if none have been set.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.prefix" attributeValue="'circuit'" />
|
||
|
||
### qregs
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.qregs" attributeTypeHint="list[QuantumRegister]">
|
||
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.qubits">
|
||
A list of `Qubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### reps
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.reps">
|
||
The number of times rotation and entanglement block are repeated.
|
||
|
||
**Returns**
|
||
|
||
The number of repetitions.
|
||
</Attribute>
|
||
|
||
### rotation\_blocks
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.rotation_blocks">
|
||
The blocks in the rotation layers.
|
||
|
||
**Returns**
|
||
|
||
The blocks in the rotation layers.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.name" attributeTypeHint="str">
|
||
A human-readable name for the circuit.
|
||
</Attribute>
|
||
|
||
### cregs
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.cregs" attributeTypeHint="list[ClassicalRegister]">
|
||
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.duration" attributeTypeHint="int | float | None">
|
||
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.EfficientSU2.unit "qiskit.circuit.library.EfficientSU2.unit").
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.circuit.library.EfficientSU2.unit">
|
||
The unit that [`duration`](#qiskit.circuit.library.EfficientSU2.duration "qiskit.circuit.library.EfficientSU2.duration") is specified in.
|
||
</Attribute>
|
||
</Class>
|
||
|