35 lines
1.9 KiB
Plaintext
35 lines
1.9 KiB
Plaintext
---
|
||
title: tsp (v0.31)
|
||
description: API reference for qiskit.optimization.applications.ising.tsp in qiskit v0.31
|
||
in_page_toc_min_heading_level: 2
|
||
python_api_type: module
|
||
python_api_name: qiskit.optimization.applications.ising.tsp
|
||
---
|
||
|
||
<span id="module-qiskit.optimization.applications.ising.tsp" />
|
||
|
||
<span id="qiskit-optimization-applications-ising-tsp" />
|
||
|
||
# qiskit.optimization.applications.ising.tsp
|
||
|
||
Convert symmetric TSP instances into Pauli list Deal with TSPLIB format. Design the tsp object w as a two-dimensional np.array e.g., w\[i, j] = x means that the length of a edge between i and j is x Note that the weights are symmetric, i.e., w\[j, i] = x always holds.
|
||
|
||
**Functions**
|
||
|
||
| | |
|
||
| --------------------------------------------------- | -------------------------------------------- |
|
||
| `calc_distance`(coord\[, name]) | calculate distance |
|
||
| `get_operator`(ins\[, penalty]) | Generate Hamiltonian for TSP of a graph. |
|
||
| `get_tsp_solution`(x) | Get graph solution from binary string. |
|
||
| `parse_tsplib_format`(filename) | Read graph in TSPLIB format from file. |
|
||
| `random_tsp`(n\[, low, high, savefile, seed, name]) | Generate a random instance for TSP. |
|
||
| `tsp_feasible`(x) | Check whether a solution is feasible or not. |
|
||
| `tsp_value`(z, w) | Compute the TSP value of a solution. |
|
||
|
||
**Classes**
|
||
|
||
| | |
|
||
| ------------------------------ | --------------------------------------------------- |
|
||
| `TspData`(name, dim, coord, w) | Create new instance of TspData(name, dim, coord, w) |
|
||
|