qiskit-documentation/docs/api/qiskit/0.31/qiskit.circuit.library.Line...

197 lines
7.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: LinearAmplitudeFunction (v0.31)
description: API reference for qiskit.circuit.library.LinearAmplitudeFunction in qiskit v0.31
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.LinearAmplitudeFunction
---
# LinearAmplitudeFunction
<Class id="qiskit.circuit.library.LinearAmplitudeFunction" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/circuit/library/arithmetic/linear_amplitude_function.py" signature="LinearAmplitudeFunction(num_state_qubits, slope, offset, domain, image, rescaling_factor=1, breakpoints=None, name='F')" modifiers="class">
Bases: `qiskit.circuit.quantumcircuit.QuantumCircuit`
A circuit implementing a (piecewise) linear function on qubit amplitudes.
An amplitude function $F$ of a function $f$ is a mapping
$$
F|x\rangle|0\rangle = \sqrt{1 - \hat{f}(x)} |x\rangle|0\rangle + \sqrt{\hat{f}(x)}
|x\rangle|1\rangle.
$$
for a function $\hat{f}: \{ 0, ..., 2^n - 1 \} \rightarrow [0, 1]$, where $|x\rangle$ is a $n$ qubit state.
This circuit implements $F$ for piecewise linear functions $\hat{f}$. In this case, the mapping $F$ can be approximately implemented using a Taylor expansion and linearly controlled Pauli-Y rotations, see \[1, 2] for more detail. This approximation uses a `rescaling_factor` to determine the accuracy of the Taylor expansion.
In general, the function of interest $f$ is defined from some interval $[a,b]$, the `domain` to $[c,d]$, the `image`, instead of $\{ 1, ..., N \}$ to $[0, 1]$. Using an affine transformation we can rescale $f$ to $\hat{f}$:
$$
\hat{f}(x) = \frac{f(\phi(x)) - c}{d - c}
$$
with
$$
\phi(x) = a + \frac{b - a}{2^n - 1} x.
$$
If $f$ is a piecewise linear function on $m$ intervals $[p_{i-1}, p_i], i \in \{1, ..., m\}$ with slopes $\alpha_i$ and offsets $\beta_i$ it can be written as
$$
f(x) = \sum_{i=1}^m 1_{[p_{i-1}, p_i]}(x) (\alpha_i x + \beta_i)
$$
where $1_{[a, b]}$ is an indication function that is 1 if the argument is in the interval $[a, b]$ and otherwise 0. The breakpoints $p_i$ can be specified by the `breakpoints` argument.
**References**
**\[1]: Woerner, S., & Egger, D. J. (2018).**
Quantum Risk Analysis. [arXiv:1806.06893](http://arxiv.org/abs/1806.06893)
**\[2]: Gacon, J., Zoufal, C., & Woerner, S. (2020).**
Quantum-Enhanced Simulation-Based Optimization. [arXiv:2005.10780](http://arxiv.org/abs/2005.10780)
**Parameters**
* **num\_state\_qubits** (`int`) The number of qubits used to encode the variable $x$.
* **slope** (`Union`\[`float`, `List`\[`float`]]) The slope of the linear function. Can be a list of slopes if it is a piecewise linear function.
* **offset** (`Union`\[`float`, `List`\[`float`]]) The offset of the linear function. Can be a list of offsets if it is a piecewise linear function.
* **domain** (`Tuple`\[`float`, `float`]) The domain of the function as tuple $(x_\min{}, x_\max{})$.
* **image** (`Tuple`\[`float`, `float`]) The image of the function as tuple $(f_\min{}, f_\max{})$.
* **rescaling\_factor** (`float`) The rescaling factor to adjust the accuracy in the Taylor approximation.
* **breakpoints** (`Optional`\[`List`\[`float`]]) The breakpoints if the function is piecewise linear. If None, the function is not piecewise.
* **name** (`str`) Name of the circuit.
## Methods Defined Here
<span id="qiskit-circuit-library-linearamplitudefunction-post-processing" />
### post\_processing
<Function id="qiskit.circuit.library.LinearAmplitudeFunction.post_processing" signature="LinearAmplitudeFunction.post_processing(scaled_value)">
Map the function value of the approximated $\hat{f}$ to $f$.
**Parameters**
**scaled\_value** (`float`) A function value from the Taylor expansion of $\hat{f}(x)$.
**Return type**
`float`
**Returns**
The `scaled_value` mapped back to the domain of $f$, by first inverting the transformation used for the Taylor approximation and then mapping back from $[0, 1]$ to the original domain.
</Function>
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.ancillas">
Returns a list of ancilla bits in the order that the registers were added.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.calibrations">
Return calibration dictionary.
**The custom pulse definition of a given gate is of the form**
\{gate\_name: \{(qubits, params): schedule}}
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.clbits">
Returns a list of classical bits in the order that the registers were added.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.data">
Return the circuit data (instructions and context).
**Returns**
a list-like object containing the tuples for the circuits data.
Each tuple is in the format `(instruction, qargs, cargs)`, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
**Return type**
QuantumCircuitData
</Attribute>
### extension\_lib
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.extension_lib" attributeValue="'include &#x22;qelib1.inc&#x22;;'" />
### global\_phase
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.global_phase">
Return the global phase of the circuit in radians.
</Attribute>
### header
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.header" attributeValue="'OPENQASM 2.0;'" />
### instances
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.instances" attributeValue="16" />
### metadata
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.metadata">
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided `dict` of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_clbits">
Return number of classical bits.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_parameters">
Convenience function to get the number of parameter objects in the circuit.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.num_qubits">
Return number of qubits.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.parameters">
Convenience function to get the parameters defined in the parameter table.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.prefix" attributeValue="'circuit'" />
### qubits
<Attribute id="qiskit.circuit.library.LinearAmplitudeFunction.qubits">
Returns a list of quantum bits in the order that the registers were added.
</Attribute>
</Class>