qiskit-documentation/docs/api/qiskit/0.31/qiskit.circuit.ControlledGa...

477 lines
13 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: ControlledGate (v0.31)
description: API reference for qiskit.circuit.ControlledGate in qiskit v0.31
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.ControlledGate
---
# ControlledGate
<Class id="qiskit.circuit.ControlledGate" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/circuit/controlledgate.py" signature="ControlledGate(name, num_qubits, params, label=None, num_ctrl_qubits=1, definition=None, ctrl_state=None, base_gate=None)" modifiers="class">
Bases: `qiskit.circuit.gate.Gate`
Controlled unitary gate.
Create a new ControlledGate. In the new gate the first `num_ctrl_qubits` of the gate are the controls.
**Parameters**
* **name** (`str`) The name of the gate.
* **num\_qubits** (`int`) The number of qubits the gate acts on.
* **params** (`List`) A list of parameters for the gate.
* **label** (`Optional`\[`str`]) An optional label for the gate.
* **num\_ctrl\_qubits** (`Optional`\[`int`]) Number of control qubits.
* **definition** (`Optional`\[`QuantumCircuit`]) A list of gate rules for implementing this gate. The elements of the list are tuples of ([`Gate()`](qiskit.circuit.Gate "qiskit.circuit.Gate"), \[qubit\_list], \[clbit\_list]).
* **ctrl\_state** (`Union`\[`int`, `str`, `None`]) The control state in decimal or as a bitstring (e.g. 111). If specified as a bitstring the length must equal num\_ctrl\_qubits, MSB on left. If None, use 2\*\*num\_ctrl\_qubits-1.
* **base\_gate** (`Optional`\[`Gate`]) Gate object to be controlled.
**Raises**
* **CircuitError** If `num_ctrl_qubits` >= `num_qubits`.
* **CircuitError** ctrl\_state \< 0 or ctrl\_state > 2\*\*num\_ctrl\_qubits.
Examples:
Create a controlled standard gate and apply it to a circuit.
```python
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
c3h_gate = HGate().control(2)
qc.append(c3h_gate, qr)
qc.draw()
```
```python
q0_0: ──■──
q0_1: ──■──
┌─┴─┐
q0_2: ┤ H ├
└───┘
```
Create a controlled custom gate and apply it to a circuit.
```python
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.h(1)
custom = qc1.to_gate().control(2)
qc2 = QuantumCircuit(4)
qc2.append(custom, [0, 3, 1, 2])
qc2.draw()
```
```python
q_0: ──────■───────
┌─────┴──────┐
q_1: ┤0 ├
│ circuit-8 │
q_2: ┤1 ├
└─────┬──────┘
q_3: ──────■───────
```
## Methods
<span id="qiskit-circuit-controlledgate-add-decomposition" />
### add\_decomposition
<Function id="qiskit.circuit.ControlledGate.add_decomposition" signature="ControlledGate.add_decomposition(decomposition)">
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
</Function>
<span id="qiskit-circuit-controlledgate-assemble" />
### assemble
<Function id="qiskit.circuit.ControlledGate.assemble" signature="ControlledGate.assemble()">
Assemble a QasmQobjInstruction
</Function>
<span id="qiskit-circuit-controlledgate-broadcast-arguments" />
### broadcast\_arguments
<Function id="qiskit.circuit.ControlledGate.broadcast_arguments" signature="ControlledGate.broadcast_arguments(qargs, cargs)">
Validation and handling of the arguments and its relationship.
For example, `cx([q[0],q[1]], q[2])` means `cx(q[0], q[2]); cx(q[1], q[2])`. This method yields the arguments in the right grouping. In the given example:
```python
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
```
The general broadcasting rules are:
> * If len(qargs) == 1:
>
> ```python
> [q[0], q[1]] -> [q[0]],[q[1]]
> ```
>
> * If len(qargs) == 2:
>
> ```python
> [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
> [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]]
> [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
> ```
>
> * If len(qargs) >= 3:
>
> ```python
> [q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
> ```
**Parameters**
* **qargs** (`List`) List of quantum bit arguments.
* **cargs** (`List`) List of classical bit arguments.
**Return type**
`Tuple`\[`List`, `List`]
**Returns**
A tuple with single arguments.
**Raises**
**CircuitError** If the input is not valid. For example, the number of arguments does not match the gate expectation.
</Function>
<span id="qiskit-circuit-controlledgate-c-if" />
### c\_if
<Function id="qiskit.circuit.ControlledGate.c_if" signature="ControlledGate.c_if(classical, val)">
Add classical condition on register or cbit classical and value val.
</Function>
<span id="qiskit-circuit-controlledgate-control" />
### control
<Function id="qiskit.circuit.ControlledGate.control" signature="ControlledGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)">
Return controlled version of gate. See [`ControlledGate`](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate") for usage.
**Parameters**
* **num\_ctrl\_qubits** (`Optional`\[`int`]) number of controls to add to gate (default=1)
* **label** (`Optional`\[`str`]) optional gate label
* **ctrl\_state** (`Union`\[`int`, `str`, `None`]) The control state in decimal or as a bitstring (e.g. 111). If None, use 2\*\*num\_ctrl\_qubits-1.
**Returns**
Controlled version of gate. This default algorithm uses num\_ctrl\_qubits-1 ancillae qubits so returns a gate of size num\_qubits + 2\*num\_ctrl\_qubits - 1.
**Return type**
[qiskit.circuit.ControlledGate](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate")
**Raises**
**QiskitError** unrecognized mode or invalid ctrl\_state
</Function>
<span id="qiskit-circuit-controlledgate-copy" />
### copy
<Function id="qiskit.circuit.ControlledGate.copy" signature="ControlledGate.copy(name=None)">
Copy of the instruction.
**Parameters**
**name** (*str*) name to be given to the copied circuit, if None then the name stays the same.
**Returns**
**a copy of the current instruction, with the name**
updated if it was provided
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
<span id="qiskit-circuit-controlledgate-inverse" />
### inverse
<Function id="qiskit.circuit.ControlledGate.inverse" signature="ControlledGate.inverse()">
Invert this gate by calling inverse on the base gate.
**Return type**
`ControlledGate`
</Function>
<span id="qiskit-circuit-controlledgate-is-parameterized" />
### is\_parameterized
<Function id="qiskit.circuit.ControlledGate.is_parameterized" signature="ControlledGate.is_parameterized()">
Return True .IFF. instruction is parameterized else False
</Function>
<span id="qiskit-circuit-controlledgate-mirror" />
### mirror
<Function id="qiskit.circuit.ControlledGate.mirror" signature="ControlledGate.mirror()">
DEPRECATED: use instruction.reverse\_ops().
**Returns**
**a new instruction with sub-instructions**
reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
<span id="qiskit-circuit-controlledgate-power" />
### power
<Function id="qiskit.circuit.ControlledGate.power" signature="ControlledGate.power(exponent)">
Creates a unitary gate as gate^exponent.
**Parameters**
**exponent** (*float*) Gate^exponent
**Returns**
To which to\_matrix is self.to\_matrix^exponent.
**Return type**
[qiskit.extensions.UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
**Raises**
**CircuitError** If Gate is not unitary
</Function>
<span id="qiskit-circuit-controlledgate-qasm" />
### qasm
<Function id="qiskit.circuit.ControlledGate.qasm" signature="ControlledGate.qasm()">
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q\[0] -> c\[0];).
</Function>
<span id="qiskit-circuit-controlledgate-repeat" />
### repeat
<Function id="qiskit.circuit.ControlledGate.repeat" signature="ControlledGate.repeat(n)">
Creates an instruction with gate repeated n amount of times.
**Parameters**
**n** (*int*) Number of times to repeat the instruction
**Returns**
Containing the definition.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
**CircuitError** If n \< 1.
</Function>
<span id="qiskit-circuit-controlledgate-reverse-ops" />
### reverse\_ops
<Function id="qiskit.circuit.ControlledGate.reverse_ops" signature="ControlledGate.reverse_ops()">
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
**Returns**
**a new instruction with**
sub-instructions reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
<span id="qiskit-circuit-controlledgate-soft-compare" />
### soft\_compare
<Function id="qiskit.circuit.ControlledGate.soft_compare" signature="ControlledGate.soft_compare(other)">
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
**Parameters**
**other** (*instruction*) other instruction.
**Returns**
are self and other equal up to parameter expressions.
**Return type**
bool
</Function>
<span id="qiskit-circuit-controlledgate-to-matrix" />
### to\_matrix
<Function id="qiskit.circuit.ControlledGate.to_matrix" signature="ControlledGate.to_matrix()">
Return a Numpy.array for the gate unitary matrix.
**Returns**
if the Gate subclass has a matrix definition.
**Return type**
np.ndarray
**Raises**
**CircuitError** If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
</Function>
<span id="qiskit-circuit-controlledgate-validate-parameter" />
### validate\_parameter
<Function id="qiskit.circuit.ControlledGate.validate_parameter" signature="ControlledGate.validate_parameter(parameter)">
Gate parameters should be int, float, or ParameterExpression
</Function>
## Attributes
### ctrl\_state
<Attribute id="qiskit.circuit.ControlledGate.ctrl_state">
Return the control state of the gate as a decimal integer.
**Return type**
`int`
</Attribute>
### decompositions
<Attribute id="qiskit.circuit.ControlledGate.decompositions">
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
</Attribute>
### definition
<Attribute id="qiskit.circuit.ControlledGate.definition">
Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl\_state, the returned definition is conjugated with X without changing the internal \_definition.
**Return type**
`List`
</Attribute>
### duration
<Attribute id="qiskit.circuit.ControlledGate.duration">
Get the duration.
</Attribute>
### label
<Attribute id="qiskit.circuit.ControlledGate.label">
Return instruction label
**Return type**
`str`
</Attribute>
### name
<Attribute id="qiskit.circuit.ControlledGate.name">
Get name of gate. If the gate has open controls the gate name will become:
> \<original\_name\_o\<ctrl\_state>
where \<original\_name> is the gate name for the default case of closed control qubits and \<ctrl\_state> is the integer value of the control state for the gate.
**Return type**
`str`
</Attribute>
### num\_ctrl\_qubits
<Attribute id="qiskit.circuit.ControlledGate.num_ctrl_qubits">
Get number of control qubits.
**Returns**
The number of control qubits for the gate.
**Return type**
int
</Attribute>
### params
<Attribute id="qiskit.circuit.ControlledGate.params">
Get parameters from base\_gate.
**Returns**
List of gate parameters.
**Return type**
list
**Raises**
**CircuitError** Controlled gate does not define a base gate
</Attribute>
### unit
<Attribute id="qiskit.circuit.ControlledGate.unit">
Get the time unit of duration.
</Attribute>
</Class>