46 lines
1.3 KiB
Plaintext
46 lines
1.3 KiB
Plaintext
---
|
||
title: double_commutator (v0.29)
|
||
description: API reference for qiskit.opflow.double_commutator in qiskit v0.29
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: function
|
||
python_api_name: qiskit.opflow.double_commutator
|
||
---
|
||
|
||
<span id="qiskit-opflow-double-commutator" />
|
||
|
||
# qiskit.opflow\.double\_commutator
|
||
|
||
<Function id="qiskit.opflow.double_commutator" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/opflow/utils.py" signature="double_commutator(op_a, op_b, op_c, sign=False)">
|
||
Compute symmetric double commutator of op\_a, op\_b and op\_c. See McWeeny chapter 13.6 Equation of motion methods (page 479)
|
||
|
||
If sign is False, it returns
|
||
|
||
$$
|
||
[[A, B], C]/2 + [A, [B, C]]/2
|
||
= (2ABC + 2CBA - BAC - CAB - ACB - BCA)/2.
|
||
$$
|
||
|
||
If sign is True, it returns
|
||
|
||
$$
|
||
\lbrace[A, B], C\rbrace/2 + \lbrace A, [B, C]\rbrace/2
|
||
= (2ABC - 2CBA - BAC + CAB - ACB + BCA)/2.
|
||
$$
|
||
|
||
**Parameters**
|
||
|
||
* **op\_a** (`OperatorBase`) – Operator A
|
||
* **op\_b** (`OperatorBase`) – Operator B
|
||
* **op\_c** (`OperatorBase`) – Operator C
|
||
* **sign** (`bool`) – False anti-commutes, True commutes
|
||
|
||
**Returns**
|
||
|
||
the double commutator
|
||
|
||
**Return type**
|
||
|
||
[OperatorBase](qiskit.aqua.operators.OperatorBase "qiskit.aqua.operators.OperatorBase")
|
||
</Function>
|
||
|