qiskit-documentation/docs/api/qiskit/0.29/qiskit.aqua.algorithms.VQC.mdx

390 lines
13 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: VQC (v0.29)
description: API reference for qiskit.aqua.algorithms.VQC in qiskit v0.29
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.aqua.algorithms.VQC
---
# VQC
<Class id="qiskit.aqua.algorithms.VQC" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms/classifiers/vqc.py" signature="VQC(optimizer, feature_map, var_form, training_dataset, test_dataset=None, datapoints=None, max_evals_grouped=1, minibatch_size=- 1, callback=None, use_sigmoid_cross_entropy=False, quantum_instance=None)" modifiers="class">
Bases: `qiskit.aqua.algorithms.vq_algorithm.VQAlgorithm`
The Variational Quantum Classifier algorithm.
Similar to [`QSVM`](qiskit.aqua.algorithms.QSVM "qiskit.aqua.algorithms.QSVM"), the VQC algorithm also applies to classification problems. VQC uses the variational method to solve such problems in a quantum processor. Specifically, it optimizes a parameterized quantum circuit to provide a solution that cleanly separates the data.
<Admonition title="Note" type="note">
The VQC stores the parameters of var\_form and feature\_map sorted by name to map the values provided by the optimizer to the circuit. This is done to ensure reproducible results, for example such that running the optimization twice with same random seeds yields the same result.
</Admonition>
**Parameters**
* **optimizer** (`Optimizer`) The classical optimizer to use.
* **feature\_map** (`Union`\[`QuantumCircuit`, `FeatureMap`]) The FeatureMap instance to use.
* **var\_form** (`Union`\[`QuantumCircuit`, `VariationalForm`]) The variational form instance.
* **training\_dataset** (`Dict`\[`str`, `ndarray`]) The training dataset, in the format \{A: np.ndarray, B: np.ndarray, …}.
* **test\_dataset** (`Optional`\[`Dict`\[`str`, `ndarray`]]) The test dataset, in same format as training\_dataset.
* **datapoints** (`Optional`\[`ndarray`]) NxD array, N is the number of data and D is data dimension.
* **max\_evals\_grouped** (`int`) The maximum number of evaluations to perform simultaneously.
* **minibatch\_size** (`int`) The size of a mini-batch.
* **callback** (`Optional`\[`Callable`\[\[`int`, `ndarray`, `float`, `int`], `None`]]) a callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as follows during each evaluation. These are: the evaluation count, parameters of the variational form, the evaluated value, the index of data batch.
* **use\_sigmoid\_cross\_entropy** (`bool`) whether to use sigmoid cross entropy or not.
* **quantum\_instance** (`Union`\[`QuantumInstance`, `Backend`, `BaseBackend`, `None`]) Quantum Instance or Backend
<Admonition title="Note" type="note">
We use label to denote numeric results and class the class names (str).
</Admonition>
**Raises**
[**AquaError**](qiskit.aqua.AquaError "qiskit.aqua.AquaError") Missing feature map or missing training dataset.
## Methods
<span id="qiskit-aqua-algorithms-vqc-batch-data" />
### batch\_data
<Function id="qiskit.aqua.algorithms.VQC.batch_data" signature="VQC.batch_data(data, labels=None, minibatch_size=- 1)">
batch data
</Function>
<span id="qiskit-aqua-algorithms-vqc-cleanup-parameterized-circuits" />
### cleanup\_parameterized\_circuits
<Function id="qiskit.aqua.algorithms.VQC.cleanup_parameterized_circuits" signature="VQC.cleanup_parameterized_circuits()">
set parameterized circuits to None
</Function>
<span id="qiskit-aqua-algorithms-vqc-construct-circuit" />
### construct\_circuit
<Function id="qiskit.aqua.algorithms.VQC.construct_circuit" signature="VQC.construct_circuit(x, theta, measurement=False)">
Construct circuit based on data and parameters in variational form.
**Parameters**
* **x** (*numpy.ndarray*) 1-D array with D dimension
* **theta** (*list\[numpy.ndarray]*) list of 1-D array, parameters sets for variational form
* **measurement** (*bool*) flag to add measurement
**Returns**
the circuit
**Return type**
[QuantumCircuit](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")
**Raises**
[**AquaError**](qiskit.aqua.AquaError "qiskit.aqua.AquaError") If `x` and `theta` share parameters with the same name.
</Function>
<span id="qiskit-aqua-algorithms-vqc-find-minimum" />
### find\_minimum
<Function id="qiskit.aqua.algorithms.VQC.find_minimum" signature="VQC.find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)">
Optimize to find the minimum cost value.
**Parameters**
* **initial\_point** (`Optional`\[`ndarray`]) If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point.
* **var\_form** (`Union`\[`QuantumCircuit`, `VariationalForm`, `None`]) If not None will be used instead of any variational form supplied via constructor.
* **cost\_fn** (`Optional`\[`Callable`]) If not None will be used instead of any cost\_fn supplied via constructor.
* **optimizer** (`Optional`\[`Optimizer`]) If not None will be used instead of any optimizer supplied via constructor.
* **gradient\_fn** (`Optional`\[`Callable`]) Optional gradient function for optimizer
**Returns**
Optimized variational parameters, and corresponding minimum cost value.
**Return type**
dict
**Raises**
**ValueError** invalid input
</Function>
<span id="qiskit-aqua-algorithms-vqc-get-optimal-circuit" />
### get\_optimal\_circuit
<Function id="qiskit.aqua.algorithms.VQC.get_optimal_circuit" signature="VQC.get_optimal_circuit()">
get optimal circuit
</Function>
<span id="qiskit-aqua-algorithms-vqc-get-optimal-cost" />
### get\_optimal\_cost
<Function id="qiskit.aqua.algorithms.VQC.get_optimal_cost" signature="VQC.get_optimal_cost()">
get optimal cost
</Function>
<span id="qiskit-aqua-algorithms-vqc-get-optimal-vector" />
### get\_optimal\_vector
<Function id="qiskit.aqua.algorithms.VQC.get_optimal_vector" signature="VQC.get_optimal_vector()">
get optimal vector
</Function>
<span id="qiskit-aqua-algorithms-vqc-get-prob-vector-for-params" />
### get\_prob\_vector\_for\_params
<Function id="qiskit.aqua.algorithms.VQC.get_prob_vector_for_params" signature="VQC.get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)">
Helper function to get probability vectors for a set of params
</Function>
<span id="qiskit-aqua-algorithms-vqc-get-probabilities-for-counts" />
### get\_probabilities\_for\_counts
<Function id="qiskit.aqua.algorithms.VQC.get_probabilities_for_counts" signature="VQC.get_probabilities_for_counts(counts)">
get probabilities for counts
</Function>
<span id="qiskit-aqua-algorithms-vqc-is-gradient-really-supported" />
### is\_gradient\_really\_supported
<Function id="qiskit.aqua.algorithms.VQC.is_gradient_really_supported" signature="VQC.is_gradient_really_supported()">
returns is gradient really supported
</Function>
<span id="qiskit-aqua-algorithms-vqc-load-model" />
### load\_model
<Function id="qiskit.aqua.algorithms.VQC.load_model" signature="VQC.load_model(file_path)">
load model
</Function>
<span id="qiskit-aqua-algorithms-vqc-predict" />
### predict
<Function id="qiskit.aqua.algorithms.VQC.predict" signature="VQC.predict(data, quantum_instance=None, minibatch_size=- 1, params=None)">
Predict the labels for the data.
**Parameters**
* **data** (*numpy.ndarray*) NxD array, N is number of data, D is data dimension
* **quantum\_instance** ([*QuantumInstance*](qiskit.aqua.QuantumInstance "qiskit.aqua.QuantumInstance")) quantum backend with all setting
* **minibatch\_size** (*int*) the size of each minibatched accuracy evaluation
* **params** (*list*) list of parameters to populate in the variational form
**Returns**
for each data point, generates the predicted probability for each class list: for each data point, generates the predicted label (that with the highest prob)
**Return type**
list
</Function>
<span id="qiskit-aqua-algorithms-vqc-run" />
### run
<Function id="qiskit.aqua.algorithms.VQC.run" signature="VQC.run(quantum_instance=None, **kwargs)">
Execute the algorithm with selected backend.
**Parameters**
* **quantum\_instance** (`Union`\[`QuantumInstance`, `Backend`, `BaseBackend`, `None`]) the experimental setting.
* **kwargs** (*dict*) kwargs
**Returns**
results of an algorithm.
**Return type**
dict
**Raises**
[**AquaError**](qiskit.aqua.AquaError "qiskit.aqua.AquaError") If a quantum instance or backend has not been provided
</Function>
<span id="qiskit-aqua-algorithms-vqc-save-model" />
### save\_model
<Function id="qiskit.aqua.algorithms.VQC.save_model" signature="VQC.save_model(file_path)">
save model
</Function>
<span id="qiskit-aqua-algorithms-vqc-set-backend" />
### set\_backend
<Function id="qiskit.aqua.algorithms.VQC.set_backend" signature="VQC.set_backend(backend, **kwargs)">
Sets backend with configuration.
**Return type**
`None`
</Function>
<span id="qiskit-aqua-algorithms-vqc-test" />
### test
<Function id="qiskit.aqua.algorithms.VQC.test" signature="VQC.test(data, labels, quantum_instance=None, minibatch_size=- 1, params=None)">
Predict the labels for the data, and test against with ground truth labels.
**Parameters**
* **data** (*numpy.ndarray*) NxD array, N is number of data and D is data dimension
* **labels** (*numpy.ndarray*) Nx1 array, N is number of data
* **quantum\_instance** ([*QuantumInstance*](qiskit.aqua.QuantumInstance "qiskit.aqua.QuantumInstance")) quantum backend with all setting
* **minibatch\_size** (*int*) the size of each minibatched accuracy evaluation
* **params** (*list*) list of parameters to populate in the variational form
**Returns**
classification accuracy
**Return type**
float
</Function>
<span id="qiskit-aqua-algorithms-vqc-train" />
### train
<Function id="qiskit.aqua.algorithms.VQC.train" signature="VQC.train(data, labels, quantum_instance=None, minibatch_size=- 1)">
Train the models, and save results.
**Parameters**
* **data** (*numpy.ndarray*) NxD array, N is number of data and D is dimension
* **labels** (*numpy.ndarray*) Nx1 array, N is number of data
* **quantum\_instance** ([*QuantumInstance*](qiskit.aqua.QuantumInstance "qiskit.aqua.QuantumInstance")) quantum backend with all setting
* **minibatch\_size** (*int*) the size of each minibatched accuracy evaluation
</Function>
## Attributes
### backend
<Attribute id="qiskit.aqua.algorithms.VQC.backend">
Returns backend.
**Return type**
`Union`\[`Backend`, `BaseBackend`]
</Attribute>
### class\_to\_label
<Attribute id="qiskit.aqua.algorithms.VQC.class_to_label">
returns class to label
</Attribute>
### datapoints
<Attribute id="qiskit.aqua.algorithms.VQC.datapoints">
return data points
</Attribute>
### feature\_map
<Attribute id="qiskit.aqua.algorithms.VQC.feature_map">
Return the feature map.
**Return type**
`Union`\[`FeatureMap`, `QuantumCircuit`, `None`]
</Attribute>
### initial\_point
<Attribute id="qiskit.aqua.algorithms.VQC.initial_point">
Returns initial point
**Return type**
`Optional`\[`ndarray`]
</Attribute>
### label\_to\_class
<Attribute id="qiskit.aqua.algorithms.VQC.label_to_class">
returns label to class
</Attribute>
### optimal\_params
<Attribute id="qiskit.aqua.algorithms.VQC.optimal_params">
returns optimal parameters
</Attribute>
### optimizer
<Attribute id="qiskit.aqua.algorithms.VQC.optimizer">
Returns optimizer
**Return type**
`Optional`\[`Optimizer`]
</Attribute>
### quantum\_instance
<Attribute id="qiskit.aqua.algorithms.VQC.quantum_instance">
Returns quantum instance.
**Return type**
`Optional`\[`QuantumInstance`]
</Attribute>
### random
<Attribute id="qiskit.aqua.algorithms.VQC.random">
Return a numpy random.
</Attribute>
### ret
<Attribute id="qiskit.aqua.algorithms.VQC.ret">
returns result
</Attribute>
### test\_dataset
<Attribute id="qiskit.aqua.algorithms.VQC.test_dataset">
returns test dataset
</Attribute>
### training\_dataset
<Attribute id="qiskit.aqua.algorithms.VQC.training_dataset">
returns training dataset
</Attribute>
### var\_form
<Attribute id="qiskit.aqua.algorithms.VQC.var_form">
Returns variational form
**Return type**
`Union`\[`QuantumCircuit`, `VariationalForm`, `None`]
</Attribute>
</Class>