qiskit-documentation/docs/api/qiskit/0.26/qiskit.quantum_info.Kraus.mdx

383 lines
18 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Kraus (v0.26)
description: API reference for qiskit.quantum_info.Kraus in qiskit v0.26
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.quantum_info.Kraus
---
<span id="qiskit-quantum-info-kraus" />
# qiskit.quantum\_info.Kraus
<Class id="qiskit.quantum_info.Kraus" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.17/qiskit/quantum_info/operators/channel/kraus.py" signature="Kraus(data, input_dims=None, output_dims=None)" modifiers="class">
Kraus representation of a quantum channel.
For a quantum channel $\mathcal{E}$, the Kraus representation is given by a set of matrices $[A_0,...,A_{K-1}]$ such that the evolution of a [`DensityMatrix`](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix") $\rho$ is given by
$$
\mathcal{E}(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger
$$
A general operator map $\mathcal{G}$ can also be written using the generalized Kraus representation which is given by two sets of matrices $[A_0,...,A_{K-1}]$, $[B_0,...,A_{B-1}]$ such that
$$
\mathcal{G}(\rho) = \sum_{i=0}^{K-1} A_i \rho B_i^\dagger
$$
See reference \[1] for further details.
**References**
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015). [arXiv:1111.6950 \[quant-ph\]](https://arxiv.org/abs/1111.6950)
Initialize a quantum channel Kraus operator.
**Parameters**
* \*\*(\*\***QuantumCircuit or** (*data*) Instruction or BaseOperator or matrix): data to initialize superoperator.
* **input\_dims** (*tuple*) the input subsystem dimensions. \[Default: None]
* **output\_dims** (*tuple*) the output subsystem dimensions. \[Default: None]
**Raises**
**QiskitError** if input data cannot be initialized as a a list of Kraus matrices.
**Additional Information:**
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a list of Numpy arrays of shape (2\*\*N, 2\*\*N) qubit systems will be used. If the input does not correspond to an N-qubit channel, it will assign a single subsystem with dimension specified by the shape of the input.
### \_\_init\_\_
<Function id="qiskit.quantum_info.Kraus.__init__" signature="__init__(data, input_dims=None, output_dims=None)">
Initialize a quantum channel Kraus operator.
**Parameters**
* \*\*(\*\***QuantumCircuit or** (*data*) Instruction or BaseOperator or matrix): data to initialize superoperator.
* **input\_dims** (*tuple*) the input subsystem dimensions. \[Default: None]
* **output\_dims** (*tuple*) the output subsystem dimensions. \[Default: None]
**Raises**
**QiskitError** if input data cannot be initialized as a a list of Kraus matrices.
**Additional Information:**
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a list of Numpy arrays of shape (2\*\*N, 2\*\*N) qubit systems will be used. If the input does not correspond to an N-qubit channel, it will assign a single subsystem with dimension specified by the shape of the input.
</Function>
## Methods
| | |
| ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------- |
| [`__init__`](#qiskit.quantum_info.Kraus.__init__ "qiskit.quantum_info.Kraus.__init__")(data\[, input\_dims, output\_dims]) | Initialize a quantum channel Kraus operator. |
| [`adjoint`](#qiskit.quantum_info.Kraus.adjoint "qiskit.quantum_info.Kraus.adjoint")() | Return the adjoint quantum channel. |
| [`compose`](#qiskit.quantum_info.Kraus.compose "qiskit.quantum_info.Kraus.compose")(other\[, qargs, front]) | Return the operator composition with another Kraus. |
| [`conjugate`](#qiskit.quantum_info.Kraus.conjugate "qiskit.quantum_info.Kraus.conjugate")() | Return the conjugate quantum channel. |
| [`copy`](#qiskit.quantum_info.Kraus.copy "qiskit.quantum_info.Kraus.copy")() | Make a deep copy of current operator. |
| [`dot`](#qiskit.quantum_info.Kraus.dot "qiskit.quantum_info.Kraus.dot")(other\[, qargs]) | Return the right multiplied operator self \* other. |
| [`expand`](#qiskit.quantum_info.Kraus.expand "qiskit.quantum_info.Kraus.expand")(other) | Return the reverse-order tensor product with another Kraus. |
| [`input_dims`](#qiskit.quantum_info.Kraus.input_dims "qiskit.quantum_info.Kraus.input_dims")(\[qargs]) | Return tuple of input dimension for specified subsystems. |
| [`is_cp`](#qiskit.quantum_info.Kraus.is_cp "qiskit.quantum_info.Kraus.is_cp")(\[atol, rtol]) | Test if Choi-matrix is completely-positive (CP) |
| [`is_cptp`](#qiskit.quantum_info.Kraus.is_cptp "qiskit.quantum_info.Kraus.is_cptp")(\[atol, rtol]) | Return True if completely-positive trace-preserving. |
| [`is_tp`](#qiskit.quantum_info.Kraus.is_tp "qiskit.quantum_info.Kraus.is_tp")(\[atol, rtol]) | Test if a channel is trace-preserving (TP) |
| [`is_unitary`](#qiskit.quantum_info.Kraus.is_unitary "qiskit.quantum_info.Kraus.is_unitary")(\[atol, rtol]) | Return True if QuantumChannel is a unitary channel. |
| [`output_dims`](#qiskit.quantum_info.Kraus.output_dims "qiskit.quantum_info.Kraus.output_dims")(\[qargs]) | Return tuple of output dimension for specified subsystems. |
| [`power`](#qiskit.quantum_info.Kraus.power "qiskit.quantum_info.Kraus.power")(n) | Return the power of the quantum channel. |
| [`reshape`](#qiskit.quantum_info.Kraus.reshape "qiskit.quantum_info.Kraus.reshape")(\[input\_dims, output\_dims, num\_qubits]) | Return a shallow copy with reshaped input and output subsystem dimensions. |
| [`tensor`](#qiskit.quantum_info.Kraus.tensor "qiskit.quantum_info.Kraus.tensor")(other) | Return the tensor product with another Kraus. |
| [`to_instruction`](#qiskit.quantum_info.Kraus.to_instruction "qiskit.quantum_info.Kraus.to_instruction")() | Convert to a Kraus or UnitaryGate circuit instruction. |
| [`to_operator`](#qiskit.quantum_info.Kraus.to_operator "qiskit.quantum_info.Kraus.to_operator")() | Try to convert channel to a unitary representation Operator. |
| [`transpose`](#qiskit.quantum_info.Kraus.transpose "qiskit.quantum_info.Kraus.transpose")() | Return the transpose quantum channel. |
## Attributes
| | |
| -------------------------------------------------------------------------------------------- | -------------------------------------------------------------------- |
| [`atol`](#qiskit.quantum_info.Kraus.atol "qiskit.quantum_info.Kraus.atol") | Default absolute tolerance parameter for float comparisons. |
| [`data`](#qiskit.quantum_info.Kraus.data "qiskit.quantum_info.Kraus.data") | Return list of Kraus matrices for channel. |
| [`dim`](#qiskit.quantum_info.Kraus.dim "qiskit.quantum_info.Kraus.dim") | Return tuple (input\_shape, output\_shape). |
| [`num_qubits`](#qiskit.quantum_info.Kraus.num_qubits "qiskit.quantum_info.Kraus.num_qubits") | Return the number of qubits if a N-qubit operator or None otherwise. |
| [`qargs`](#qiskit.quantum_info.Kraus.qargs "qiskit.quantum_info.Kraus.qargs") | Return the qargs for the operator. |
| [`rtol`](#qiskit.quantum_info.Kraus.rtol "qiskit.quantum_info.Kraus.rtol") | Default relative tolerance parameter for float comparisons. |
### adjoint
<Function id="qiskit.quantum_info.Kraus.adjoint" signature="adjoint()">
Return the adjoint quantum channel.
<Admonition title="Note" type="note">
This is equivalent to the matrix Hermitian conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the adjoint channel $\mathcal{{E}}^\dagger$ is $S_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger$.
</Admonition>
</Function>
### atol
<Attribute id="qiskit.quantum_info.Kraus.atol">
Default absolute tolerance parameter for float comparisons.
</Attribute>
### compose
<Function id="qiskit.quantum_info.Kraus.compose" signature="compose(other, qargs=None, front=False)">
Return the operator composition with another Kraus.
**Parameters**
* **other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) a Kraus object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
* **front** (*bool*) If True compose using right operator multiplication, instead of left multiplication \[default: False].
**Returns**
The composed Kraus.
**Return type**
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
**Raises**
**QiskitError** if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
<Admonition title="Note" type="note">
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while [`dot()`](#qiskit.quantum_info.Kraus.dot "qiskit.quantum_info.Kraus.dot") is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B.dot(A)` when `A` and `B` are of the same type.
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](#qiskit.quantum_info.Kraus.dot "qiskit.quantum_info.Kraus.dot") method `A.dot(B) == A.compose(B, front=True)`.
</Admonition>
</Function>
### conjugate
<Function id="qiskit.quantum_info.Kraus.conjugate" signature="conjugate()">
Return the conjugate quantum channel.
<Admonition title="Note" type="note">
This is equivalent to the matrix complex conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the conjugate channel $\overline{{\mathcal{{E}}}}$ is $S_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}$.
</Admonition>
</Function>
### copy
<Function id="qiskit.quantum_info.Kraus.copy" signature="copy()">
Make a deep copy of current operator.
</Function>
### data
<Attribute id="qiskit.quantum_info.Kraus.data">
Return list of Kraus matrices for channel.
</Attribute>
### dim
<Attribute id="qiskit.quantum_info.Kraus.dim">
Return tuple (input\_shape, output\_shape).
</Attribute>
### dot
<Function id="qiskit.quantum_info.Kraus.dot" signature="dot(other, qargs=None)">
Return the right multiplied operator self \* other.
**Parameters**
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) an operator object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
**Returns**
The right matrix multiplied Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
</Function>
### expand
<Function id="qiskit.quantum_info.Kraus.expand" signature="expand(other)">
Return the reverse-order tensor product with another Kraus.
**Parameters**
**other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) a Kraus object.
**Returns**
**the tensor product $b \otimes a$, where $a$**
is the current Kraus, and $b$ is the other Kraus.
**Return type**
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
</Function>
### input\_dims
<Function id="qiskit.quantum_info.Kraus.input_dims" signature="input_dims(qargs=None)">
Return tuple of input dimension for specified subsystems.
</Function>
### is\_cp
<Function id="qiskit.quantum_info.Kraus.is_cp" signature="is_cp(atol=None, rtol=None)">
Test if Choi-matrix is completely-positive (CP)
</Function>
### is\_cptp
<Function id="qiskit.quantum_info.Kraus.is_cptp" signature="is_cptp(atol=None, rtol=None)">
Return True if completely-positive trace-preserving.
</Function>
### is\_tp
<Function id="qiskit.quantum_info.Kraus.is_tp" signature="is_tp(atol=None, rtol=None)">
Test if a channel is trace-preserving (TP)
</Function>
### is\_unitary
<Function id="qiskit.quantum_info.Kraus.is_unitary" signature="is_unitary(atol=None, rtol=None)">
Return True if QuantumChannel is a unitary channel.
</Function>
### num\_qubits
<Attribute id="qiskit.quantum_info.Kraus.num_qubits">
Return the number of qubits if a N-qubit operator or None otherwise.
</Attribute>
### output\_dims
<Function id="qiskit.quantum_info.Kraus.output_dims" signature="output_dims(qargs=None)">
Return tuple of output dimension for specified subsystems.
</Function>
### power
<Function id="qiskit.quantum_info.Kraus.power" signature="power(n)">
Return the power of the quantum channel.
**Parameters**
**n** (*float*) the power exponent.
**Returns**
the channel $\mathcal{{E}} ^n$.
**Return type**
[SuperOp](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp")
**Raises**
**QiskitError** if the input and output dimensions of the SuperOp are not equal.
<Admonition title="Note" type="note">
For non-positive or non-integer exponents the power is defined as the matrix power of the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{{E}}$, the SuperOp of the powered channel $\mathcal{{E}}^\n$ is $S_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n$.
</Admonition>
</Function>
### qargs
<Attribute id="qiskit.quantum_info.Kraus.qargs">
Return the qargs for the operator.
</Attribute>
### reshape
<Function id="qiskit.quantum_info.Kraus.reshape" signature="reshape(input_dims=None, output_dims=None, num_qubits=None)">
Return a shallow copy with reshaped input and output subsystem dimensions.
**Parameters**
* **input\_dims** (*None or tuple*) new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
* **output\_dims** (*None or tuple*) new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
* **num\_qubits** (*None or int*) reshape to an N-qubit operator \[Default: None].
**Returns**
returns self with reshaped input and output dimensions.
**Return type**
BaseOperator
**Raises**
**QiskitError** if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
</Function>
### rtol
<Attribute id="qiskit.quantum_info.Kraus.rtol">
Default relative tolerance parameter for float comparisons.
</Attribute>
### tensor
<Function id="qiskit.quantum_info.Kraus.tensor" signature="tensor(other)">
Return the tensor product with another Kraus.
**Parameters**
**other** ([*Kraus*](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")) a Kraus object.
**Returns**
**the tensor product $a \otimes b$, where $a$**
is the current Kraus, and $b$ is the other Kraus.
**Return type**
[Kraus](#qiskit.quantum_info.Kraus "qiskit.quantum_info.Kraus")
<Admonition title="Note" type="note">
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
</Admonition>
</Function>
### to\_instruction
<Function id="qiskit.quantum_info.Kraus.to_instruction" signature="to_instruction()">
Convert to a Kraus or UnitaryGate circuit instruction.
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
**Returns**
A kraus instruction for the channel.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
**QiskitError** if input data is not an N-qubit CPTP quantum channel.
</Function>
### to\_operator
<Function id="qiskit.quantum_info.Kraus.to_operator" signature="to_operator()">
Try to convert channel to a unitary representation Operator.
</Function>
### transpose
<Function id="qiskit.quantum_info.Kraus.transpose" signature="transpose()">
Return the transpose quantum channel.
<Admonition title="Note" type="note">
This is equivalent to the matrix transpose in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation, ie. for a channel $\mathcal{E}$, the SuperOp of the transpose channel $\mathcal{{E}}^T$ is $S_{mathcal{E}^T} = S_{\mathcal{E}}^T$.
</Admonition>
</Function>
</Class>