413 lines
16 KiB
Plaintext
413 lines
16 KiB
Plaintext
---
|
||
title: RZZGate (v0.26)
|
||
description: API reference for qiskit.circuit.library.RZZGate in qiskit v0.26
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.RZZGate
|
||
---
|
||
|
||
<span id="qiskit-circuit-library-rzzgate" />
|
||
|
||
# qiskit.circuit.library.RZZGate
|
||
|
||
<Class id="qiskit.circuit.library.RZZGate" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.17/qiskit/circuit/library/standard_gates/rzz.py" signature="RZZGate(theta)" modifiers="class">
|
||
A parametric 2-qubit $Z \otimes Z$ interaction (rotation about ZZ).
|
||
|
||
This gate is symmetric, and is maximally entangling at $\theta = \pi/2$.
|
||
|
||
**Circuit Symbol:**
|
||
|
||
```python
|
||
q_0: ───■────
|
||
│zz(θ)
|
||
q_1: ───■────
|
||
```
|
||
|
||
**Matrix Representation:**
|
||
|
||
$$
|
||
\begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZZ}(\theta) = exp(-i \th Z{\otimes}Z) =
|
||
\begin{pmatrix}
|
||
e^{-i \th} & 0 & 0 & 0 \\
|
||
0 & e^{i \th} & 0 & 0 \\
|
||
0 & 0 & e^{i \th} & 0 \\
|
||
0 & 0 & 0 & e^{-i \th}
|
||
\end{pmatrix}\end{split}\end{aligned}\end{align}
|
||
$$
|
||
|
||
This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:
|
||
|
||
$$
|
||
\begin{split}R_{ZZ}(\theta) =
|
||
\begin{pmatrix}
|
||
RZ(\theta) & 0 \\
|
||
0 & RZ(-\theta)
|
||
\end{pmatrix}\end{split}
|
||
$$
|
||
|
||
**Examples:**
|
||
|
||
> $$
|
||
> R_{ZZ}(\theta = 0) = I
|
||
> $$
|
||
>
|
||
> $$
|
||
> R_{ZZ}(\theta = 2\pi) = -I
|
||
> $$
|
||
>
|
||
> $$
|
||
> R_{ZZ}(\theta = \pi) = - Z \otimes Z
|
||
> $$
|
||
>
|
||
> $$
|
||
> \begin{split}R_{ZZ}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}}
|
||
> \begin{pmatrix}
|
||
> 1-i & 0 & 0 & 0 \\
|
||
> 0 & 1+i & 0 & 0 \\
|
||
> 0 & 0 & 1+i & 0 \\
|
||
> 0 & 0 & 0 & 1-i
|
||
> \end{pmatrix}\end{split}
|
||
> $$
|
||
|
||
Create new RZZ gate.
|
||
|
||
### \_\_init\_\_
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.__init__" signature="__init__(theta)">
|
||
Create new RZZ gate.
|
||
</Function>
|
||
|
||
## Methods
|
||
|
||
| | |
|
||
| ----------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------ |
|
||
| [`__init__`](#qiskit.circuit.library.RZZGate.__init__ "qiskit.circuit.library.RZZGate.__init__")(theta) | Create new RZZ gate. |
|
||
| [`add_decomposition`](#qiskit.circuit.library.RZZGate.add_decomposition "qiskit.circuit.library.RZZGate.add_decomposition")(decomposition) | Add a decomposition of the instruction to the SessionEquivalenceLibrary. |
|
||
| [`assemble`](#qiskit.circuit.library.RZZGate.assemble "qiskit.circuit.library.RZZGate.assemble")() | Assemble a QasmQobjInstruction |
|
||
| [`broadcast_arguments`](#qiskit.circuit.library.RZZGate.broadcast_arguments "qiskit.circuit.library.RZZGate.broadcast_arguments")(qargs, cargs) | Validation and handling of the arguments and its relationship. |
|
||
| [`c_if`](#qiskit.circuit.library.RZZGate.c_if "qiskit.circuit.library.RZZGate.c_if")(classical, val) | Add classical condition on register classical and value val. |
|
||
| [`control`](#qiskit.circuit.library.RZZGate.control "qiskit.circuit.library.RZZGate.control")(\[num\_ctrl\_qubits, label, ctrl\_state]) | Return controlled version of gate. |
|
||
| [`copy`](#qiskit.circuit.library.RZZGate.copy "qiskit.circuit.library.RZZGate.copy")(\[name]) | Copy of the instruction. |
|
||
| [`inverse`](#qiskit.circuit.library.RZZGate.inverse "qiskit.circuit.library.RZZGate.inverse")() | Return inverse RZZ gate (i.e. |
|
||
| [`is_parameterized`](#qiskit.circuit.library.RZZGate.is_parameterized "qiskit.circuit.library.RZZGate.is_parameterized")() | Return True .IFF. |
|
||
| [`mirror`](#qiskit.circuit.library.RZZGate.mirror "qiskit.circuit.library.RZZGate.mirror")() | DEPRECATED: use instruction.reverse\_ops(). |
|
||
| [`power`](#qiskit.circuit.library.RZZGate.power "qiskit.circuit.library.RZZGate.power")(exponent) | Creates a unitary gate as gate^exponent. |
|
||
| [`qasm`](#qiskit.circuit.library.RZZGate.qasm "qiskit.circuit.library.RZZGate.qasm")() | Return a default OpenQASM string for the instruction. |
|
||
| [`repeat`](#qiskit.circuit.library.RZZGate.repeat "qiskit.circuit.library.RZZGate.repeat")(n) | Creates an instruction with gate repeated n amount of times. |
|
||
| [`reverse_ops`](#qiskit.circuit.library.RZZGate.reverse_ops "qiskit.circuit.library.RZZGate.reverse_ops")() | For a composite instruction, reverse the order of sub-instructions. |
|
||
| [`soft_compare`](#qiskit.circuit.library.RZZGate.soft_compare "qiskit.circuit.library.RZZGate.soft_compare")(other) | Soft comparison between gates. |
|
||
| [`to_matrix`](#qiskit.circuit.library.RZZGate.to_matrix "qiskit.circuit.library.RZZGate.to_matrix")() | Return a Numpy.array for the gate unitary matrix. |
|
||
| [`validate_parameter`](#qiskit.circuit.library.RZZGate.validate_parameter "qiskit.circuit.library.RZZGate.validate_parameter")(parameter) | Gate parameters should be int, float, or ParameterExpression |
|
||
|
||
## Attributes
|
||
|
||
| | |
|
||
| ------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------- |
|
||
| [`decompositions`](#qiskit.circuit.library.RZZGate.decompositions "qiskit.circuit.library.RZZGate.decompositions") | Get the decompositions of the instruction from the SessionEquivalenceLibrary. |
|
||
| [`definition`](#qiskit.circuit.library.RZZGate.definition "qiskit.circuit.library.RZZGate.definition") | Return definition in terms of other basic gates. |
|
||
| [`duration`](#qiskit.circuit.library.RZZGate.duration "qiskit.circuit.library.RZZGate.duration") | Get the duration. |
|
||
| [`label`](#qiskit.circuit.library.RZZGate.label "qiskit.circuit.library.RZZGate.label") | Return gate label |
|
||
| [`params`](#qiskit.circuit.library.RZZGate.params "qiskit.circuit.library.RZZGate.params") | return instruction params. |
|
||
| [`unit`](#qiskit.circuit.library.RZZGate.unit "qiskit.circuit.library.RZZGate.unit") | Get the time unit of duration. |
|
||
|
||
### add\_decomposition
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.add_decomposition" signature="add_decomposition(decomposition)">
|
||
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
|
||
</Function>
|
||
|
||
### assemble
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.assemble" signature="assemble()">
|
||
Assemble a QasmQobjInstruction
|
||
|
||
**Return type**
|
||
|
||
`Instruction`
|
||
</Function>
|
||
|
||
### broadcast\_arguments
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.broadcast_arguments" signature="broadcast_arguments(qargs, cargs)">
|
||
Validation and handling of the arguments and its relationship.
|
||
|
||
For example, `cx([q[0],q[1]], q[2])` means `cx(q[0], q[2]); cx(q[1], q[2])`. This method yields the arguments in the right grouping. In the given example:
|
||
|
||
```python
|
||
in: [[q[0],q[1]], q[2]],[]
|
||
outs: [q[0], q[2]], []
|
||
[q[1], q[2]], []
|
||
```
|
||
|
||
The general broadcasting rules are:
|
||
|
||
> * If len(qargs) == 1:
|
||
>
|
||
> ```python
|
||
> [q[0], q[1]] -> [q[0]],[q[1]]
|
||
> ```
|
||
>
|
||
> * If len(qargs) == 2:
|
||
>
|
||
> ```python
|
||
> [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
|
||
> [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]]
|
||
> [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
|
||
> ```
|
||
>
|
||
> * If len(qargs) >= 3:
|
||
>
|
||
> ```python
|
||
> [q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
|
||
> ```
|
||
|
||
**Parameters**
|
||
|
||
* **qargs** (`List`) – List of quantum bit arguments.
|
||
* **cargs** (`List`) – List of classical bit arguments.
|
||
|
||
**Return type**
|
||
|
||
`Tuple`\[`List`, `List`]
|
||
|
||
**Returns**
|
||
|
||
A tuple with single arguments.
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If the input is not valid. For example, the number of arguments does not match the gate expectation.
|
||
</Function>
|
||
|
||
### c\_if
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.c_if" signature="c_if(classical, val)">
|
||
Add classical condition on register classical and value val.
|
||
</Function>
|
||
|
||
### control
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.control" signature="control(num_ctrl_qubits=1, label=None, ctrl_state=None)">
|
||
Return controlled version of gate. See [`ControlledGate`](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate") for usage.
|
||
|
||
**Parameters**
|
||
|
||
* **num\_ctrl\_qubits** (`Optional`\[`int`]) – number of controls to add to gate (default=1)
|
||
* **label** (`Optional`\[`str`]) – optional gate label
|
||
* **ctrl\_state** (`Union`\[`int`, `str`, `None`]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2\*\*num\_ctrl\_qubits-1.
|
||
|
||
**Returns**
|
||
|
||
Controlled version of gate. This default algorithm uses num\_ctrl\_qubits-1 ancillae qubits so returns a gate of size num\_qubits + 2\*num\_ctrl\_qubits - 1.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.ControlledGate](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate")
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – unrecognized mode or invalid ctrl\_state
|
||
</Function>
|
||
|
||
### copy
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.copy" signature="copy(name=None)">
|
||
Copy of the instruction.
|
||
|
||
**Parameters**
|
||
|
||
**name** (*str*) – name to be given to the copied circuit, if None then the name stays the same.
|
||
|
||
**Returns**
|
||
|
||
**a copy of the current instruction, with the name**
|
||
|
||
updated if it was provided
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
</Function>
|
||
|
||
### decompositions
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.decompositions">
|
||
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
|
||
</Attribute>
|
||
|
||
### definition
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.definition">
|
||
Return definition in terms of other basic gates.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.duration">
|
||
Get the duration.
|
||
</Attribute>
|
||
|
||
### inverse
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.inverse" signature="inverse()">
|
||
Return inverse RZZ gate (i.e. with the negative rotation angle).
|
||
</Function>
|
||
|
||
### is\_parameterized
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.is_parameterized" signature="is_parameterized()">
|
||
Return True .IFF. instruction is parameterized else False
|
||
</Function>
|
||
|
||
### label
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.label">
|
||
Return gate label
|
||
|
||
**Return type**
|
||
|
||
`str`
|
||
</Attribute>
|
||
|
||
### mirror
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.mirror" signature="mirror()">
|
||
DEPRECATED: use instruction.reverse\_ops().
|
||
|
||
**Returns**
|
||
|
||
**a new instruction with sub-instructions**
|
||
|
||
reversed.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
</Function>
|
||
|
||
### params
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.params">
|
||
return instruction params.
|
||
</Attribute>
|
||
|
||
### power
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.power" signature="power(exponent)">
|
||
Creates a unitary gate as gate^exponent.
|
||
|
||
**Parameters**
|
||
|
||
**exponent** (*float*) – Gate^exponent
|
||
|
||
**Returns**
|
||
|
||
To which to\_matrix is self.to\_matrix^exponent.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.extensions.UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If Gate is not unitary
|
||
</Function>
|
||
|
||
### qasm
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.qasm" signature="qasm()">
|
||
Return a default OpenQASM string for the instruction.
|
||
|
||
Derived instructions may override this to print in a different format (e.g. measure q\[0] -> c\[0];).
|
||
</Function>
|
||
|
||
### repeat
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.repeat" signature="repeat(n)">
|
||
Creates an instruction with gate repeated n amount of times.
|
||
|
||
**Parameters**
|
||
|
||
**n** (*int*) – Number of times to repeat the instruction
|
||
|
||
**Returns**
|
||
|
||
Containing the definition.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If n \< 1.
|
||
</Function>
|
||
|
||
### reverse\_ops
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.reverse_ops" signature="reverse_ops()">
|
||
For a composite instruction, reverse the order of sub-instructions.
|
||
|
||
This is done by recursively reversing all sub-instructions. It does not invert any gate.
|
||
|
||
**Returns**
|
||
|
||
**a new instruction with**
|
||
|
||
sub-instructions reversed.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
</Function>
|
||
|
||
### soft\_compare
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.soft_compare" signature="soft_compare(other)">
|
||
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
|
||
|
||
**Parameters**
|
||
|
||
**other** (*instruction*) – other instruction.
|
||
|
||
**Returns**
|
||
|
||
are self and other equal up to parameter expressions.
|
||
|
||
**Return type**
|
||
|
||
bool
|
||
</Function>
|
||
|
||
### to\_matrix
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.to_matrix" signature="to_matrix()">
|
||
Return a Numpy.array for the gate unitary matrix.
|
||
|
||
**Returns**
|
||
|
||
if the Gate subclass has a matrix definition.
|
||
|
||
**Return type**
|
||
|
||
np.ndarray
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
|
||
</Function>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.circuit.library.RZZGate.unit">
|
||
Get the time unit of duration.
|
||
</Attribute>
|
||
|
||
### validate\_parameter
|
||
|
||
<Function id="qiskit.circuit.library.RZZGate.validate_parameter" signature="validate_parameter(parameter)">
|
||
Gate parameters should be int, float, or ParameterExpression
|
||
</Function>
|
||
</Class>
|
||
|