qiskit-documentation/docs/api/qiskit/0.26/qiskit.aqua.components.opti...

369 lines
20 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: GSLS (v0.26)
description: API reference for qiskit.aqua.components.optimizers.GSLS in qiskit v0.26
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.aqua.components.optimizers.GSLS
---
<span id="qiskit-aqua-components-optimizers-gsls" />
# qiskit.aqua.components.optimizers.GSLS
<Class id="qiskit.aqua.components.optimizers.GSLS" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/aqua/components/optimizers/gsls.py" signature="GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50, max_iter=None)" modifiers="class">
Gaussian-smoothed Line Search.
An implementation of the line search algorithm described in [https://arxiv.org/pdf/1905.01332.pdf](https://arxiv.org/pdf/1905.01332.pdf), using gradient approximation based on Gaussian-smoothed samples on a sphere.
**Parameters**
* **maxiter** (`int`) Maximum number of iterations.
* **max\_eval** (`int`) Maximum number of evaluations.
* **disp** (`bool`) Set to True to display convergence messages.
* **sampling\_radius** (`float`) Sampling radius to determine gradient estimate.
* **sample\_size\_factor** (`int`) The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.
* **initial\_step\_size** (`float`) Initial step size for the descent algorithm.
* **min\_step\_size** (`float`) Minimum step size for the descent algorithm.
* **step\_size\_multiplier** (`float`) Step size reduction after unsuccessful steps, in the interval (0, 1).
* **armijo\_parameter** (`float`) Armijo parameter for sufficient decrease criterion, in the interval (0, 1).
* **min\_gradient\_norm** (`float`) If the gradient norm is below this threshold, the algorithm stops.
* **max\_failed\_rejection\_sampling** (`int`) Maximum number of attempts to sample points within bounds.
* **max\_iter** (`Optional`\[`int`]) Deprecated, use maxiter.
### \_\_init\_\_
<Function id="qiskit.aqua.components.optimizers.GSLS.__init__" signature="__init__(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50, max_iter=None)">
**Parameters**
* **maxiter** (`int`) Maximum number of iterations.
* **max\_eval** (`int`) Maximum number of evaluations.
* **disp** (`bool`) Set to True to display convergence messages.
* **sampling\_radius** (`float`) Sampling radius to determine gradient estimate.
* **sample\_size\_factor** (`int`) The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.
* **initial\_step\_size** (`float`) Initial step size for the descent algorithm.
* **min\_step\_size** (`float`) Minimum step size for the descent algorithm.
* **step\_size\_multiplier** (`float`) Step size reduction after unsuccessful steps, in the interval (0, 1).
* **armijo\_parameter** (`float`) Armijo parameter for sufficient decrease criterion, in the interval (0, 1).
* **min\_gradient\_norm** (`float`) If the gradient norm is below this threshold, the algorithm stops.
* **max\_failed\_rejection\_sampling** (`int`) Maximum number of attempts to sample points within bounds.
* **max\_iter** (`Optional`\[`int`]) Deprecated, use maxiter.
</Function>
## Methods
| | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- |
| [`__init__`](#qiskit.aqua.components.optimizers.GSLS.__init__ "qiskit.aqua.components.optimizers.GSLS.__init__")(\[maxiter, max\_eval, disp, …]) | **type maxiter**`int` |
| [`get_support_level`](#qiskit.aqua.components.optimizers.GSLS.get_support_level "qiskit.aqua.components.optimizers.GSLS.get_support_level")() | Return support level dictionary. |
| [`gradient_approximation`](#qiskit.aqua.components.optimizers.GSLS.gradient_approximation "qiskit.aqua.components.optimizers.GSLS.gradient_approximation")(n, x, x\_value, …) | Construct gradient approximation from given sample. |
| [`gradient_num_diff`](#qiskit.aqua.components.optimizers.GSLS.gradient_num_diff "qiskit.aqua.components.optimizers.GSLS.gradient_num_diff")(x\_center, f, epsilon\[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center. |
| [`ls_optimize`](#qiskit.aqua.components.optimizers.GSLS.ls_optimize "qiskit.aqua.components.optimizers.GSLS.ls_optimize")(n, obj\_fun, initial\_point, …) | Run the line search optimization. |
| [`optimize`](#qiskit.aqua.components.optimizers.GSLS.optimize "qiskit.aqua.components.optimizers.GSLS.optimize")(num\_vars, objective\_function\[, …]) | Perform optimization. |
| [`print_options`](#qiskit.aqua.components.optimizers.GSLS.print_options "qiskit.aqua.components.optimizers.GSLS.print_options")() | Print algorithm-specific options. |
| [`sample_points`](#qiskit.aqua.components.optimizers.GSLS.sample_points "qiskit.aqua.components.optimizers.GSLS.sample_points")(n, x, num\_points) | Sample `num_points` points around `x` on the `n`-sphere of specified radius. |
| [`sample_set`](#qiskit.aqua.components.optimizers.GSLS.sample_set "qiskit.aqua.components.optimizers.GSLS.sample_set")(n, x, var\_lb, var\_ub, num\_points) | Construct sample set of given size. |
| [`set_max_evals_grouped`](#qiskit.aqua.components.optimizers.GSLS.set_max_evals_grouped "qiskit.aqua.components.optimizers.GSLS.set_max_evals_grouped")(limit) | Set max evals grouped |
| [`set_options`](#qiskit.aqua.components.optimizers.GSLS.set_options "qiskit.aqua.components.optimizers.GSLS.set_options")(\*\*kwargs) | Sets or updates values in the options dictionary. |
| [`wrap_function`](#qiskit.aqua.components.optimizers.GSLS.wrap_function "qiskit.aqua.components.optimizers.GSLS.wrap_function")(function, args) | Wrap the function to implicitly inject the args at the call of the function. |
## Attributes
| | |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------- |
| [`bounds_support_level`](#qiskit.aqua.components.optimizers.GSLS.bounds_support_level "qiskit.aqua.components.optimizers.GSLS.bounds_support_level") | Returns bounds support level |
| [`gradient_support_level`](#qiskit.aqua.components.optimizers.GSLS.gradient_support_level "qiskit.aqua.components.optimizers.GSLS.gradient_support_level") | Returns gradient support level |
| [`initial_point_support_level`](#qiskit.aqua.components.optimizers.GSLS.initial_point_support_level "qiskit.aqua.components.optimizers.GSLS.initial_point_support_level") | Returns initial point support level |
| [`is_bounds_ignored`](#qiskit.aqua.components.optimizers.GSLS.is_bounds_ignored "qiskit.aqua.components.optimizers.GSLS.is_bounds_ignored") | Returns is bounds ignored |
| [`is_bounds_required`](#qiskit.aqua.components.optimizers.GSLS.is_bounds_required "qiskit.aqua.components.optimizers.GSLS.is_bounds_required") | Returns is bounds required |
| [`is_bounds_supported`](#qiskit.aqua.components.optimizers.GSLS.is_bounds_supported "qiskit.aqua.components.optimizers.GSLS.is_bounds_supported") | Returns is bounds supported |
| [`is_gradient_ignored`](#qiskit.aqua.components.optimizers.GSLS.is_gradient_ignored "qiskit.aqua.components.optimizers.GSLS.is_gradient_ignored") | Returns is gradient ignored |
| [`is_gradient_required`](#qiskit.aqua.components.optimizers.GSLS.is_gradient_required "qiskit.aqua.components.optimizers.GSLS.is_gradient_required") | Returns is gradient required |
| [`is_gradient_supported`](#qiskit.aqua.components.optimizers.GSLS.is_gradient_supported "qiskit.aqua.components.optimizers.GSLS.is_gradient_supported") | Returns is gradient supported |
| [`is_initial_point_ignored`](#qiskit.aqua.components.optimizers.GSLS.is_initial_point_ignored "qiskit.aqua.components.optimizers.GSLS.is_initial_point_ignored") | Returns is initial point ignored |
| [`is_initial_point_required`](#qiskit.aqua.components.optimizers.GSLS.is_initial_point_required "qiskit.aqua.components.optimizers.GSLS.is_initial_point_required") | Returns is initial point required |
| [`is_initial_point_supported`](#qiskit.aqua.components.optimizers.GSLS.is_initial_point_supported "qiskit.aqua.components.optimizers.GSLS.is_initial_point_supported") | Returns is initial point supported |
| [`setting`](#qiskit.aqua.components.optimizers.GSLS.setting "qiskit.aqua.components.optimizers.GSLS.setting") | Return setting |
### bounds\_support\_level
<Attribute id="qiskit.aqua.components.optimizers.GSLS.bounds_support_level">
Returns bounds support level
</Attribute>
### get\_support\_level
<Function id="qiskit.aqua.components.optimizers.GSLS.get_support_level" signature="get_support_level()">
Return support level dictionary.
**Return type**
`Dict`\[`str`, `int`]
**Returns**
A dictionary containing the support levels for different options.
</Function>
### gradient\_approximation
<Function id="qiskit.aqua.components.optimizers.GSLS.gradient_approximation" signature="gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y)">
Construct gradient approximation from given sample.
**Parameters**
* **n** (`int`) Dimension of the problem.
* **x** (`ndarray`) Point around which the sample set was constructed.
* **x\_value** (`float`) Objective function value at x.
* **directions** (`ndarray`) Directions of the sample points wrt the central point x, as a 2D array.
* **sample\_set\_x** (`ndarray`) x-coordinates of the sample set, one point per row, as a 2D array.
* **sample\_set\_y** (`ndarray`) Objective function values of the points in sample\_set\_x, as a 1D array.
**Return type**
`ndarray`
**Returns**
Gradient approximation at x, as a 1D array.
</Function>
### gradient\_num\_diff
<Function id="qiskit.aqua.components.optimizers.GSLS.gradient_num_diff" signature="gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** (*float*) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** (*int*) max evals grouped
**Returns**
the gradient computed
**Return type**
grad
</Function>
### gradient\_support\_level
<Attribute id="qiskit.aqua.components.optimizers.GSLS.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.aqua.components.optimizers.GSLS.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.aqua.components.optimizers.GSLS.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### ls\_optimize
<Function id="qiskit.aqua.components.optimizers.GSLS.ls_optimize" signature="ls_optimize(n, obj_fun, initial_point, var_lb, var_ub)">
Run the line search optimization.
**Parameters**
* **n** (`int`) Dimension of the problem.
* **obj\_fun** (`Callable`) Objective function.
* **initial\_point** (`ndarray`) Initial point.
* **var\_lb** (`ndarray`) Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
* **var\_ub** (`ndarray`) Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below.
**Return type**
`Tuple`\[`ndarray`, `float`, `int`, `float`]
**Returns**
Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.
**Raises**
**ValueError** If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.
</Function>
### optimize
<Function id="qiskit.aqua.components.optimizers.GSLS.optimize" signature="optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)">
Perform optimization.
**Parameters**
* **num\_vars** (*int*) Number of parameters to be optimized.
* **objective\_function** (*callable*) A function that computes the objective function.
* **gradient\_function** (*callable*) A function that computes the gradient of the objective function, or None if not available.
* **variable\_bounds** (*list\[(float, float)]*) List of variable bounds, given as pairs (lower, upper). None means unbounded.
* **initial\_point** (*numpy.ndarray\[float]*) Initial point.
**Return type**
`Tuple`\[`ndarray`, `float`, `int`]
**Returns**
**point, value, nfev**
point: is a 1D numpy.ndarray\[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
**Raises**
**ValueError** invalid input
</Function>
### print\_options
<Function id="qiskit.aqua.components.optimizers.GSLS.print_options" signature="print_options()">
Print algorithm-specific options.
</Function>
### sample\_points
<Function id="qiskit.aqua.components.optimizers.GSLS.sample_points" signature="sample_points(n, x, num_points)">
Sample `num_points` points around `x` on the `n`-sphere of specified radius.
The radius of the sphere is `self._options['sampling_radius']`.
**Parameters**
* **n** (`int`) Dimension of the problem.
* **x** (`ndarray`) Point around which the sample set is constructed.
* **num\_points** (`int`) Number of points in the sample set.
**Return type**
`Tuple`\[`ndarray`, `ndarray`]
**Returns**
A tuple containing the sampling points and the directions.
</Function>
### sample\_set
<Function id="qiskit.aqua.components.optimizers.GSLS.sample_set" signature="sample_set(n, x, var_lb, var_ub, num_points)">
Construct sample set of given size.
**Parameters**
* **n** (`int`) Dimension of the problem.
* **x** (`ndarray`) Point around which the sample set is constructed.
* **var\_lb** (`ndarray`) Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
* **var\_ub** (`ndarray`) Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above.
* **num\_points** (`int`) Number of points in the sample set.
**Return type**
`Tuple`\[`ndarray`, `ndarray`]
**Returns**
Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.
**Raises**
**RuntimeError** If not enough samples could be generated within the bounds.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.aqua.components.optimizers.GSLS.set_max_evals_grouped" signature="set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.aqua.components.optimizers.GSLS.set_options" signature="set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** (*dict*) options, given as name=value.
</Function>
### setting
<Attribute id="qiskit.aqua.components.optimizers.GSLS.setting">
Return setting
</Attribute>
### wrap\_function
<Function id="qiskit.aqua.components.optimizers.GSLS.wrap_function" signature="wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** (*tuple*) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
</Class>