348 lines
14 KiB
Plaintext
348 lines
14 KiB
Plaintext
---
|
||
title: Move (v0.9)
|
||
description: API reference for qiskit_addon_cutting.instructions.Move in qiskit-addon-cutting v0.9
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit_addon_cutting.instructions.Move
|
||
---
|
||
|
||
# Move
|
||
|
||
<Class id="qiskit_addon_cutting.instructions.Move" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit-addon-cutting/tree/stable/0.9/qiskit_addon_cutting/instructions/move.py" signature="Move(label=None)" modifiers="class">
|
||
Bases: [`Instruction`](/api/qiskit/qiskit.circuit.Instruction "(in Qiskit v1.3)")
|
||
|
||
A two-qubit instruction representing a reset of the second qubit followed by a swap.
|
||
|
||
**Circuit Symbol:**
|
||
|
||
```python
|
||
┌───────┐
|
||
q_0: ┤0 ├ q_0: ──────X─
|
||
│ Move │ = │
|
||
q_1: ┤1 ├ q_1: ─|0>──X─
|
||
└───────┘
|
||
```
|
||
|
||
The desired effect of this instruction, typically, is to move the state of the first qubit to the second qubit. For this to work as expected, the second incoming qubit must share no entanglement with the remainder of the system. If this qubit *is* entangled, then performing the reset operation will in turn implement a quantum channel on the other qubit(s) with which it is entangled, resulting in the partial collapse of those qubits.
|
||
|
||
The simplest way to ensure that the second (i.e., destination) qubit shares no entanglement with the remainder of the system is to use a fresh qubit which has not been used since initialization.
|
||
|
||
Another valid way is to use, as a desination qubit, a qubit whose immediate prior use was as the source (i.e., first) qubit of a preceding [`Move`](#qiskit_addon_cutting.instructions.Move "qiskit_addon_cutting.instructions.Move") operation.
|
||
|
||
The following circuit contains two [`Move`](#qiskit_addon_cutting.instructions.Move "qiskit_addon_cutting.instructions.Move") operations, corresponding to each of the aforementioned cases:
|
||
|
||
```python
|
||
import numpy as np
|
||
from qiskit import QuantumCircuit
|
||
from qiskit_addon_cutting.instructions import Move
|
||
|
||
qc = QuantumCircuit(4)
|
||
qc.ryy(np.pi / 4, 0, 1)
|
||
qc.rx(np.pi / 4, 3)
|
||
qc.append(Move(), [1, 2])
|
||
qc.rz(np.pi / 4, 0)
|
||
qc.ryy(np.pi / 4, 2, 3)
|
||
qc.append(Move(), [2, 1])
|
||
qc.ryy(np.pi / 4, 0, 1)
|
||
qc.rx(np.pi / 4, 3)
|
||
qc.draw("mpl")
|
||
```
|
||
|
||

|
||
|
||
A full demonstration of the [`Move`](#qiskit_addon_cutting.instructions.Move "qiskit_addon_cutting.instructions.Move") instruction is available in [the introductory tutorial on wire cutting](https://qiskit.github.io/qiskit-addon-cutting/tutorials/03_wire_cutting_via_move_instruction.html).
|
||
|
||
Create a [`Move`](#qiskit_addon_cutting.instructions.Move "qiskit_addon_cutting.instructions.Move") instruction.
|
||
|
||
## Attributes
|
||
|
||
**Parameters**
|
||
|
||
**label** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)") *| None*)
|
||
|
||
### base\_class
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.base_class">
|
||
Get the base class of this instruction. This is guaranteed to be in the inheritance tree of `self`.
|
||
|
||
The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for \_all\_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioral perspective. In particular, you should *not* override [`base_class`](#qiskit_addon_cutting.instructions.Move.base_class "qiskit_addon_cutting.instructions.Move.base_class") if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrized gate with a particular set of parameters for the purposes of distinguishing it in a `Target` from the full parametrized gate.
|
||
|
||
This is often exactly equivalent to `type(obj)`, except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:
|
||
|
||
```python
|
||
>>> isinstance(XGate(), XGate)
|
||
True
|
||
>>> type(XGate()) is XGate
|
||
False
|
||
>>> XGate().base_class is XGate
|
||
True
|
||
```
|
||
|
||
In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that `Instruction.name` should be a more suitable discriminator in most situations.
|
||
</Attribute>
|
||
|
||
### condition
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.condition">
|
||
The classical condition on the instruction.
|
||
|
||
<Admonition title="Deprecated since version 1.3.0" type="danger">
|
||
The property `qiskit.circuit.instruction.Instruction.condition` is deprecated as of qiskit 1.3.0. It will be removed in 2.0.0.
|
||
</Admonition>
|
||
</Attribute>
|
||
|
||
### condition\_bits
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.condition_bits">
|
||
Get Clbits in condition.
|
||
|
||
<Admonition title="Deprecated since version 1.3.0" type="danger">
|
||
The property `qiskit.circuit.instruction.Instruction.condition_bits` is deprecated as of qiskit 1.3.0. It will be removed in 2.0.0.
|
||
</Admonition>
|
||
</Attribute>
|
||
|
||
### decompositions
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.decompositions">
|
||
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
|
||
</Attribute>
|
||
|
||
### definition
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.definition">
|
||
Return definition in terms of other basic gates.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.duration">
|
||
Get the duration.
|
||
|
||
<Admonition title="Deprecated since version 1.3.0" type="danger">
|
||
The property `qiskit.circuit.instruction.Instruction.duration` is deprecated as of qiskit 1.3.0. It will be removed in Qiskit 2.0.0.
|
||
</Admonition>
|
||
</Attribute>
|
||
|
||
### label
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.label">
|
||
Return instruction label
|
||
</Attribute>
|
||
|
||
### mutable
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.mutable">
|
||
Is this instance is a mutable unique instance or not.
|
||
|
||
If this attribute is `False` the gate instance is a shared singleton and is not mutable.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.name">
|
||
Return the name.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.num_clbits">
|
||
Return the number of clbits.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.num_qubits">
|
||
Return the number of qubits.
|
||
</Attribute>
|
||
|
||
### params
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.params">
|
||
The parameters of this `Instruction`. Ideally these will be gate angles.
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit_addon_cutting.instructions.Move.unit">
|
||
Get the time unit of duration.
|
||
|
||
<Admonition title="Deprecated since version 1.3.0" type="danger">
|
||
The property `qiskit.circuit.instruction.Instruction.unit` is deprecated as of qiskit 1.3.0. It will be removed in Qiskit 2.0.0.
|
||
</Admonition>
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### add\_decomposition
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.add_decomposition" signature="add_decomposition(decomposition)">
|
||
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
|
||
</Function>
|
||
|
||
### assemble
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.assemble" signature="assemble()">
|
||
Assemble a QasmQobjInstruction
|
||
|
||
<Admonition title="Deprecated since version 1.2" type="danger">
|
||
The method `qiskit.circuit.instruction.Instruction.assemble()` is deprecated as of qiskit 1.2. It will be removed in the 2.0 release. The Qobj class and related functionality are part of the deprecated BackendV1 workflow, and no longer necessary for BackendV2. If a user workflow requires Qobj it likely relies on deprecated functionality and should be updated to use BackendV2.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### broadcast\_arguments
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.broadcast_arguments" signature="broadcast_arguments(qargs, cargs)">
|
||
Validation of the arguments.
|
||
|
||
**Parameters**
|
||
|
||
* **qargs** (*List*) – List of quantum bit arguments.
|
||
* **cargs** (*List*) – List of classical bit arguments.
|
||
|
||
**Yields**
|
||
|
||
*Tuple(List, List)* – A tuple with single arguments.
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If the input is not valid. For example, the number of arguments does not match the gate expectation.
|
||
</Function>
|
||
|
||
### c\_if
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.c_if" signature="c_if(classical, val)">
|
||
Set a classical equality condition on this instruction between the register or cbit `classical` and value `val`.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
|
||
</Admonition>
|
||
|
||
<Admonition title="Deprecated since version 1.3.0" type="danger">
|
||
The method `qiskit.circuit.instruction.Instruction.c_if()` is deprecated as of qiskit 1.3.0. It will be removed in 2.0.0.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
### copy
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.copy" signature="copy(name=None)">
|
||
Copy of the instruction.
|
||
|
||
**Parameters**
|
||
|
||
**name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) – name to be given to the copied circuit, if `None` then the name stays the same.
|
||
|
||
**Returns**
|
||
|
||
a copy of the current instruction, with the name updated if it was provided
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](/api/qiskit/qiskit.circuit.Instruction "(in Qiskit v1.3)")
|
||
</Function>
|
||
|
||
### inverse
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.inverse" signature="inverse(annotated=False)">
|
||
Invert this instruction.
|
||
|
||
If annotated is False, the inverse instruction is implemented as a fresh instruction with the recursively inverted definition.
|
||
|
||
If annotated is True, the inverse instruction is implemented as `AnnotatedOperation`, and corresponds to the given instruction annotated with the “inverse modifier”.
|
||
|
||
Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.) In particular, they can choose how to handle the argument `annotated` which may include ignoring it and always returning a concrete gate class if the inverse is defined as a standard gate.
|
||
|
||
**Parameters**
|
||
|
||
**annotated** ([`bool`](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – if set to True the output inverse gate will be returned as `AnnotatedOperation`.
|
||
|
||
**Returns**
|
||
|
||
The inverse operation.
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – if the instruction is not composite and an inverse has not been implemented for it.
|
||
</Function>
|
||
|
||
### is\_parameterized
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.is_parameterized" signature="is_parameterized()">
|
||
Return whether the `Instruction` contains [compile-time parameters](/api/qiskit/circuit#circuit-compile-time-parameters "(in Qiskit v1.3)").
|
||
</Function>
|
||
|
||
### repeat
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.repeat" signature="repeat(n)">
|
||
Creates an instruction with `self` repeated :math\`n\` times.
|
||
|
||
If this operation has a conditional, the output instruction will have the same conditional and the inner repeated operations will be unconditional; instructions within a compound definition cannot be conditioned on registers within Qiskit’s data model. This means that it is not valid to apply a repeated instruction to a clbit that it both writes to and reads from in its condition.
|
||
|
||
**Parameters**
|
||
|
||
**n** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) – Number of times to repeat the instruction
|
||
|
||
**Returns**
|
||
|
||
Containing the definition.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](/api/qiskit/qiskit.circuit.Instruction "(in Qiskit v1.3)")
|
||
|
||
**Raises**
|
||
|
||
**CircuitError** – If n \< 1.
|
||
</Function>
|
||
|
||
### reverse\_ops
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.reverse_ops" signature="reverse_ops()">
|
||
For a composite instruction, reverse the order of sub-instructions.
|
||
|
||
This is done by recursively reversing all sub-instructions. It does not invert any gate.
|
||
|
||
**Returns**
|
||
|
||
**a new instruction with**
|
||
|
||
sub-instructions reversed.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](/api/qiskit/qiskit.circuit.Instruction "(in Qiskit v1.3)")
|
||
</Function>
|
||
|
||
### soft\_compare
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.soft_compare" signature="soft_compare(other)">
|
||
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
|
||
|
||
**Parameters**
|
||
|
||
**other** (*instruction*) – other instruction.
|
||
|
||
**Returns**
|
||
|
||
are self and other equal up to parameter expressions.
|
||
|
||
**Return type**
|
||
|
||
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")
|
||
</Function>
|
||
|
||
### to\_mutable
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.to_mutable" signature="to_mutable()">
|
||
Return a mutable copy of this gate.
|
||
|
||
This method will return a new mutable copy of this gate instance. If a singleton instance is being used this will be a new unique instance that can be mutated. If the instance is already mutable it will be a deepcopy of that instance.
|
||
</Function>
|
||
|
||
### validate\_parameter
|
||
|
||
<Function id="qiskit_addon_cutting.instructions.Move.validate_parameter" signature="validate_parameter(parameter)">
|
||
Instruction parameters has no validation or normalization.
|
||
</Function>
|
||
</Class>
|
||
|