294 lines
158 KiB
Plaintext
294 lines
158 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c5693a08-8ac2-4ca6-bfa9-3bf6148d257b",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Transpilation default settings and configuration options\n",
|
||
"\n",
|
||
"Abstract circuits need to be transpiled because QPUs have a limited set of basis gates and cannot execute arbitrary operations. The transpiler's function is to change arbitrary circuits so that they can run on a specified QPU. This is done by translating the circuits to the supported basis gates, and by introducing SWAP gates as needed, so that the circuit's connectivity matches that of the QPU.\n",
|
||
"\n",
|
||
"As explained in [Transpile with pass managers](transpile-with-pass-managers), you can create a [pass manager](/api/qiskit/qiskit.transpiler.PassManager) using the [`generate_preset_pass_manager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.generate_preset_pass_manager) function and pass a circuit or list of circuits to its [run](/api/qiskit/qiskit.transpiler.PassManager#run) method to transpile them. You can call `generate_preset_pass_manager` passing only the optimization level and backend, choosing to use the defaults for all other options, or you can pass additional arguments to the function to fine-tune the transpilation.\n",
|
||
"\n",
|
||
"## Basic usage without parameters\n",
|
||
"\n",
|
||
"In this example, we pass a circuit and target QPU to the transpiler without specifying any further parameters.\n",
|
||
"\n",
|
||
"Create a circuit and view the result:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "f7070db2-2b3e-4dcd-bbc7-cac7662867b3",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAEvCAYAAAD/80NvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33ElEQVR4nO3deVxU9f4/8NcswLAKCMomuwiY+5apmbl8xeVaQZpZaprVtzQ0E2+2mF2vmlpWduta/ir1GulNyyWXXFJRy1xSExGQLVZtFBdw2GbO7w9lviLDMnPOzAF6PR+PHjHnc86Z90EYXudzPudzFIIgCCAiIiKykFLuAoiIiKh5Y5ggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhJFLXcBRNS8HT9+3Kz1tVotNm/ejMceewxeXl6N2qZXr14WVkdEtsCeCSKyKa1Wi9WrV0Or1cpdChFJhGGCiIiIRGGYICIiIlEYJoiIiEgUhgkisilXV1cMHz4crq6ucpdCRBJRCIIgyF0EETVf5t7NYQnezUHUtLFngohsqry8HLm5uSgvL5e7FCKSCMMEEdlUVlYWYmNjkZWVJXcpRCQRTlpFJgmCADS3M0cHBygUCkl2JQgCqnTN6/jVjtIdP93+GdDr9XKXYRaVSsWfAZIFwwSZVl6OqrGT5K7CLOqNawCNRpJ9VenKsT7sKUn2ZSsTMv4DOydpjp8AvV6PTZs2yV2GWWJjY6FW82OdbI+XOYiIiEgUhgkiIiIShf1hRGRTkZGR+PXXX+Uug4gkxJ4JIiIiEoVhgohsKicnB1OmTEFOTo7cpRCRRBgmiMimdDodzp07B51OJ3cpRCQRhgkiIiIShWGCiIiIRGGYICIiIlEYJojIpnx9fbFgwQL4+vrKXQoRSYTzTBCRTbVq1QoxMTFyl9EsGQwGKJU8B6Smh2GCiGyquLgYe/fuxZAhQ+Dh4SF3OTZRXFyMzMxM5OXloaysDADg4OCAgIAAhIaGwsPDo8EHdBUXF2Px4sUYO3YsevbsaaPKiRqHYYKIbOrSpUtYtmwZOnXq1KLDhFarxb59+3Do0CFcuXKl3nU9PDzQv39/DB06FG3atKnVXlxcjH/84x8oKCjAihUr8Oqrr6Jbt25WrJ7IPOwvswGtVouEhASEh4dDo9GgXbt2iI+PR2lpKaZOnQqFQoGPP/5Y7jKJSALFxcX48MMPMWPGDHz33XcNBonqbbZt24b4+Hi899570Gq1NdqqgwTuBA9/f3+rHgORudgzYWWnT59GTEwMioqK4OzsjOjoaBQUFOCjjz5CRkYGrl69CgDo2rWr3KVaxUHtZQz9+QCWRHfGK2GRJtex37YRI9r44vs+A2xenygKBaKnjUSHp4fCJcAbZVduIGvbUZxeugFVunK5qyMbEwQBSUlJWLNmDUpLS43LlUolIiMjERYWhuDgYLi5uQEAbt68iezsbGRmZiIlJQV6vR6CIOD48eM4d+4cnnrqKXTr1g0LFy40BgkvLy+89dZbJnsviOTEMGFFWq0Wo0ePRlFREWbPno358+fD1dUVALB06VLMnTsXarUaCoUCnTt3lrtcMlPvdyYj+tmRyNlxDOf+vQ3u7f0RPXUEWt8Xgt1j3wEEQe4SyUYMBgO++OIL7N2717jMzc0Nw4YNw8MPPwxPT0+T2z3wwAMAgGvXruHAgQPYvXs3iouLodPp8Pnnn8PR0dE4UyiDBDVlDBNW9PLLLyMvLw/Tp0/H8uXLa7QlJCTg66+/xpkzZxASEmI8W6HmwT0iAFFTYpD9wy848Oz//dve/OMy7v/nVIQ80g9Z3x2WtcamysnJCX369IGTk5PcpUjCYDBg1apVOHjwoHFZv379MHnyZOPJQ0Pc3d3xyCOPYNiwYVi7di0OHDgA3Jl6HAwS1AxwzISVpKSkYMOGDfDy8sLixYtNrtOjRw8AQJcuXWosz8rKwt/+9je4urrCw8MDEydObNR1V7KdkEf7Q6FU4vznP9RYnr5+LypvlSEs9kHZamvqAgMDsXLlSgQGBspdiiQ2bdpkDBIqlQovvvgiZsyY0eggcTcnJyeMGzeuVk9Gx44dGSSoSWOYsJLExEQYDAZMmDABLi4uJtdxdHQE7gkTN2/exKBBg5CXl4fExER89tlnSEpKwqhRo2AwGGxWv9Ru6fXQlpeb/K858uoaDoNeD+1v6TWW68srcfVcNry6hslWW1On1+tRUlICvV4vdymiZWRk4LvvvgMAKBQKvPzyy3jwQcuDZPVgy+qxVNUOHjyI8+fPi66XyFp4mcNK9u/fDwAYNGhQnevk5eUB94SJzz77DPn5+Th06JDxzC0gIAAPPPAAtm7dikceecTqtVvDO6nJeCc1We4yJOPU1gPlV2/CUFFVq+1W0VW07R0JpZ0ahsra7X916enpmDhxItauXYvISNODcpuDyspKfPrpp8aQHxcXhz59+li8v3vv2vDy8sKAAQOMYeXf//43li5dCo1GI9EREEmHYcJKcnJyAABBQUEm26uqqnDkyBHgnjCxfft29O/fv0YXcN++fREaGopt27ZZFCZ69uyJoqIis7ZxVCpxvmtfs9+rLs8GhiLWr53JtphfDppcbq6IiAjoJOq9sROUmI/edbarHB2gr6g02aYvv71c7WiPChuGiYj2EahU2L73Ki4uzqz1L1++DADYuXMnTp482ahtHn30UYtqE8Pe3r7OS5QAcOTIEeMJQXBwMMaMGWPxe5kKEm+99Ra8vLxw/vx5pKam4vLly/jpp5/qnT00IiICFRUVFtdBf20+Pj44ceKERdsyTFhJ9a1h1QOo7rVhwwZotVq4uroiJCTEuPz8+fN4/PHHa63fsWNHi7s5i4qKkJ+fb9Y2TioVIOHdquEuLhjs3Va6HZpQUFCAWxJ1ndsrVEA95ep15bBzbmWyTeVgBwCo0tn2Q72gsAAVgu0vHdx9G2RjVP9O6HS6Rm9r7s+vFBwcHOpt//HHH41fP/PMM1CrLfs4rStIVI+RmDp1KhISEgAAe/bswfDhw+ucLbOgoADlzfTSITVvDBNW4uPjg+LiYpw6dQp9+9Y8wy8sLMScOXMAAJ07d67xwVBcXAx3d/da+/P09ERqaqrFtZjLsRnO/+/n5ydpzwTq2dWtS8VoFREApb261qUOJx9PlF25bvNLHH6+frL0TDg7O5u1fnWAcHR0bPS2ckzSZG9vX2dbRkYGMjMzAQAhISGIiIiw6D0aChK4M2A1KioKKSkpKCgoQHJyMu677z6T+/Pz82PPBFnMkr8V1RgmrGTIkCFISUnBu+++i6FDhxo/bI4fP46nn37aOMOdLSarsqTbSigrQ9XYSVapx1rS0tKgkOh6cuWtMqwPe6rOdu3pi/B/qCu8urXH5WMpxuUqBzt43heMS7+k1LmttaSlp8HOyfbX048fP27W+hcuXEBiYiJiYmIaPWbigw8+sLA6y1VVVWHTpk0m286ePWv8evDgwQ0+V8OUxgSJu98jJSXF+N51hYm0tDSLe0iIxGh+p5/NREJCAlq3bo3c3Fx07NgRnTp1Qvv27dG7d2+Ehobi4YcfBkzcFurh4YFr167V2t/Vq1frnPiGbC9ry1EIBgOip42ssbz9hCGwc9Igc/Mh2Wpr6sLDw7F7926Eh4fLXYrFqnslACA6Otrs7c0JEve+R1ZWlkU1E1kTw4SVBAQEICkpCSNHjoRGo0F2djY8PT2xatUq/PDDD0hLSwNMhImoqCiTYyPOnz+PqKgom9VP9bt24Q9c+HIXgkfej0H/bw7aPzkYPedPRO+3J6HoaDIyN3PCqrqo1Wp4eHg06zPo6j/ojo6OZncNmxskcOcko1Wr22N0MjMzIXB2VWpimu9vczMQFRWF7du311peUlKC7OxsKJXKWt2Vo0aNwrx585CXl4eAgAAAwLFjx5CRkYFly5bZrHZq2K9vfYWS3D8R8dQQBAzujrKrN5DyxU78tnQDp9KuR15eHlasWIFZs2YZf8abm+LiYgBA27ZtoTRjfJElQQJ35rDw9fXF9evXUVpaiqqqKtjZ2Yk8CiLpMEzIIDk5GYIgICIiotaUws899xxWrlyJMWPGYMGCBSgrK0NCQgJ69+4t6tYzuQz0aoOK0WPrXaeh9qZKMBiQvGobkldtk7uUZqWkpARJSUmYNm2a3KVYRBAExMXFoaKiwthb0FirV6+2+KFdAwYMQFRUVL0DQ4nkwjAhg99//x0wcYkDdx4OtH//fsTHx+OJJ56AWq3GqFGjsGLFCrPOgIjIOhQKhcXzXkydOhUFBQWorKw0+1kbgwcPtug9iWyBYUIG9YUJAAgLCzN5eYSImjdPT0+8+eabqKqq4rM2qEVhmJBBQ2GCiFou3pVFLRHDhAyqn9tB9Ffk7e2N+Ph4eHt7y10KEUmEYYKIbKp169aYMGGC3GUQkYQ4oo+IbOrGjRvYu3cvbty4IXcpRCQRhgkisqmCggLMmzfPeIskETV/DBNEREQkCsMEERERicIwQURERKIwTBCRTTk4OKBDhw5wcHCQuxQikghvDSUimwoJCcG6devkLoOIJMSeCSIiIhKFYYKIbCo1NRX9+vVDamqq3KUQkUQYJojIpgRBQGVlJQRBkLsUIpIIx0yQaQ4OUG9cI3cV5uGAPpKQSqVCbGysZPtbtmoDbpaWwtXZGXOeH1frtRRUKpUk+yEyF8MEmaRQKACNRu4yiGSjUCigVkv3ESkAMAi3/69Wq2u9JmrOeJmDiIiIRGEcJiKbCg4ORmJiIvz9/eUuhYgkwjBBRDal0WgQFhYmdxlEJCFe5iAimyosLMTChQtRWFgodylEJBGGCSKyqevXr2Pr1q24fv263KUQkUQYJoiIiEgUhgkiIiIShWGCiIiIRGGYICKbUiqV6NatG5RKfvwQtRT8bSYimzIYDPjtt99gMBjkLoWIJMIwQURERKIwTBAREZEoDBNEREQkCsMEEdmUq6srhg8fDldXV7lLISKJ8NkcRGRT/v7+eOedd+Qug4gkxJ4JIrKp8vJy5Obmory8XO5SiEgiDBNEZFNZWVmIjY1FVlaW3KUQkUQYJoiIiEgUjpkgkwRBAJpbN7SDAxQKhdxVELUIgiBAr9fLXYZZVCoVPwNkwjBBppWXo2rsJLmrMIt64xpAo5G7DKIWQa/XY9OmTXKXYZbY2Fio1fyzJgde5iAiIiJRGOGIyKYiIyPx66+/yl0GEUmIPRNEREQkCsMEEdlUTk4OpkyZgpycHLlLISKJMEwQkU3pdDqcO3cOOp1O7lKISCIME0RERCQKwwQRERGJwjBBREREojBMEJFN+fr6YsGCBfD19ZW7FCKSCOeZICKbatWqFWJiYuQug4gkxJ4JIrKp4uJi/Pe//0VxcbHcpZCNlZWV4c8//0RRURG0Wi0qKyvN2j41NRUnT560Wn1kOfZMEJFNXbp0CcuWLUOnTp3g4eEhdzlkRWVlZfj555+RnJyMzMxMFBYW3n6I4B0qlQqBgYEICQlBt27d0L17d6hUKpP7Sk1NxeLFi1FZWYlXXnkFPXr0sOGRUEPYM2EDWq0WCQkJCA8Ph0ajQbt27RAfH4/S0lJMnToVCoUCH3/8sdxlEhFJQqvVYs2aNXjxxRexatUqHD58GAUFBTWCBO48TCwrKwv79+/He++9hxkzZmDz5s24detWjfWqg0RZWRn0ej327dtXa18kL/ZMWNnp06cRExODoqIiODs7Izo6GgUFBfjoo4+QkZGBq1evAgC6du0qd6lWcVB7GUN/PoAl0Z3xSlikyXXst23EiDa++L7PAJvXJ0anGY+idadQtO4cCtegtijJvYxve79o1j7sXBwRNW0kgmJ6wy3EFwqVEiW5l5G75ySSP92Ksis3rFY/kdQEQcD+/fvxn//8p9akZGq1GoGBgWjTpg3UajUqKipQUFCA/Px8YzC4evUqNm7ciH379uG5555Dly5dagQJAOjUqRNmzpzJR403MQwTVqTVajF69GgUFRVh9uzZmD9/PlxdXQEAS5cuxdy5c6FWq6FQKNC5c2e5yyUz9Zg3AWVXb+Lq75mwd3Mye3u3UF8MTXwDLgHeyNlxDOlf74ehqgre3SMQPW0k2j8xCHufXgLtb+lWqZ9ISrdu3cKHH36IM2fOGJfZ2dmhX79+GDRoEMLCwkw+HrysrAznz5/Hvn37cOrUKQiCgCtXrmDx4sXo3bs3zp49WyNIzJkzB/b29jY9NmoYw4QVvfzyy8jLy8P06dOxfPnyGm0JCQn4+uuvcebMGYSEhMDNzU22Osky3/Z5ESV/XAYAjPnpfdg5axq9rcrRHoPX/B1OPp7YN3EJ8vadMral/WcvLqzZjf/Z8BYGr5mLLYNeaVE9FE5OTujTpw+cnMwPYNQ0lZSUYOHChcjOzjYue+ihhzBhwgTjCVRdNBoNunfvju7du6OoqAiff/45kpOTAaDG02UZJJo2jpmwkpSUFGzYsAFeXl5YvHixyXWqBxB16dLFuKw6fPTu3RsODg7symvCqoOEJdqPH4xW4f44//kPNYJEtStnMnBy8ddw9HbHfS+OEVlp0xIYGIiVK1ciMDBQ7lJIAuXl5ViyZIkxSLi6umLu3Ll44YUXGgwS9/Lx8cHrr7+OkSNH1lju7u6OV199lUGiCWOYsJLExEQYDAZMmDABLi4uJtdxdHQE7gkTFy9exKZNm+Dj44NevXrZrF5ru6XXQ1tebvK/v6LgUfcDd3oh6nJx40/QV1QiaOT9NqzM+vR6PUpKSqDX6+UuhSSwYcMGXLx4Ebgzh8jbb7+Nbt26Wby/9PR07Nu3r8aya9eu4dixY6JrJevhZQ4r2b9/PwBg0KBBda6Tl5cH3BMmHnzwQRQWFgIA3n77bRw5csTqtdrCO6nJeCc1We4ymgz3DoGouHkLN7OL6lxHr6vA9YsF8IwOgtpJg6pbZTat0VrS09MxceJErF27FpGRpgflUvOQmpqKnTt3AnfGR8ybNw/+/v6i9nf3YMt27dohNzcXALBmzRreTtyEMUxYSU5ODgAgKCjIZHtVVZUxKNwdJpTKltlZ9GxgKGL92plsi/nloM3rkZu9qyN0l681uF5lye1b5OxcWk6YoJZBEASsXr3aeCfG2LFj6/y8awxTd23MmTMHq1atwpEjR1BaWor169dj+vTpkh0DSYdhwkpKS0sBoNbtUdU2bNgArVYLV1dXhISEWLWWnj17oqio7jNgUxyVSpzv2leyGsJdXDDYu61k+zMlIiICOoNBkn3ZCUrMR29J9mVKxU0d7FwdG67DxQkGvR5lV282uG5E+whUKqQ5fnPExcWZtf7ly7fHmuzcubPRsxk++uijFtXWlDz6zEw4u7ihsKgQAQEBtV43Nfb29nWO9wKA8+fPG3sNQkNDa41zMEddQcLe3h6TJ0/G2bNncfPmTfz888946qmn4O7ubnI/ERERqKiosLiOvzofHx+cOHHCom0ZJqzEx8cHxcXFOHXqFPr2rflHubCwEHPmzAEAdO7c2eqDLIuKipCfn2/WNk4qFdDMpr4oKCjALYmuw9srVIAVs8+11D/g07cjXIN96rzUoXK0R6twP5TmaSFUNXxcBYUFqBBsPw6hOjg3VnXA1ul0jd7W3J/fpshw52fToNcjPz+/1uumxsHBod723bt3G78ePXq0xb2q9QUJ3BnQ+fDDD2PLli3Q6/X46aef6gyXBQUFKP+LjsOSG8OElQwZMgQpKSl49913MXToUERERAAAjh8/jqeffhparRaw0WRVPj4+Zm/j2Awvt/j5+UnaMwErnuRnb/8FPn07IuLJwTi5aL3JdcIffwgqeztkbDrUqH36+frJ0jPh7Oxs1vrVAcLR0bHR24q5Dt9UKO9ME61UqeDv71/rdVNT350T5eXlxl4ld3d3iweLNxQkqg0ePBhbt26FIAg4cuRInWHCz8+PPRMiWPK3ohrDhJVUzyORm5uLjh07IjIyEmVlZbh48SJiYmIQHByM3bt31xgvYS2WdFsJZWWoGjvJKvVYS1paGhSaxs/1UJ/KW2VYH/aUJPsyJT1xH6KeGY7o50eh6Odk5P90uka7Z6cQdH/tSdwquooLX+5q1D7T0tNg5yTN8Zvj+PHjZq1fVVWFyZMnw9XV1eQkRqZ88MEHFlbXdCz613rcKCmFr48v8vLyar1uaqqqqrBp0yaTbTk5Oca7cbp27drof8e7NTZIAECbNm0QFBSE7Oxs5Ofno6ysDBoTv+tpaWkW1ULi8btuJQEBAUhKSsKcOXNw8OBBZGdnIzo6GqtWrcK0adMQFhYG3DP4kpqX0LgH4RLgDQDQtHaD0k6NzjNjAQAleX8i89u6exT0ugrsm/wuhn79Ogavew05PxxD0dFkCHo9vLqGIyxuICqul2Df5HdRpr1us2OyBbVazRH5zVxmZqbx69DQULO3NydI3P0+2dnZEAQB2dnZvBOoiWGYsKKoqChs37691vKSkhJkZ2dDqVTivvvuk6U2Ei9i/GD4PNCxxrLuc8cDAIqOJtcbJgDgRkYBtg5+9c6zOfogYHA32DnfHpRZfOEP7BzzBipu3Kp3H81RXl4eVqxYgVmzZjXJgYfUsIKCAuPX5t7BYUmQAIDg4GDj1/n5+QwTTQzDhAySk5MhCAIiIiJMTin87bffAndGS9/9Ojg4GD179rRxteIM9GqDitFj612nofamalfsfNH7qCzR4eyKb3F2xe1/Y4VKiYc+n42gmD4If+JhnP+sdhht7kpKSpCUlIRp06bJXQpZyNHREV5eXqisrDRrlsv09HSLggQAuLm5oVWrVrC3t4ednZ2o+kl6DBMy+P3334F6LnE8/vjjJl9PmjQJX331lQ0qJLkIegMOPr8Cg76Yg94LJkNfVoHUtT/KXRZRDePHj8f48ePN3q5169bw8PBAYWGh2c/auP/++3H//S1rNtiWhGFCBg2FiepJYOivyVBZhX1P131/P1Fz5enpiTfffBObN2/GxIkT+ayNFoRhQgYNhQkiopbK09MTzz77rNxlkMQYJmRQ/dwOor8ib29vxMfHw9vbW+5SiEgiDBNEZFOtW7fGhAkT5C6DiCTU/KY5JKJm7caNG9i7dy9u3LghdylEJBGGCSKyqYKCAsybN6/GXAVE1LwxTBAREZEoDBNEREQkCsMEERERicIwQUQ25eDggA4dOsDBwUHuUohIIrw1lIhsKiQkBOvWrZO7DCKSEHsmiIiISBSGCSKyqdTUVPTr1w+pqalyl0JEEmGYICKbEgQBlZWVfKAdUQvCMEFERESicAAmmebgAPXGNXJXYR7eHUAkGZVKhdjYWMn2t2zVBtwsLYWrszPmPD+u1mspqFQqSfZD5mOYIJMUCgWg0chdBhHJRKFQQK2W7k+EAMAg3P6/Wq2u9ZqaN/4LEpFNBQcHIzExEf7+/nKXQkQSYZggIpvSaDQICwuTuwwikhAHYBKRTRUWFmLhwoUoLCyUuxQikgjDBBHZ1PXr17F161Zcv35d7lKISCIME0RERCQKwwQRERGJwjBBREREojBMEJFNeXp6YtKkSfD09JS7FCKSCMMEEdmUUqmEnZ0dlEp+/BC1FPxtJiKb0mq1WL16NbRardylEJFEGCaIiIhIFIYJIiIiEoVhgoiIiERhmCAim3J1dcXw4cPh6uoqdylEJBE+6IuIbMrf3x/vvPOO3GUQkYTYM0FENlVeXo7c3FyUl5fLXQoRSYRhgohsKisrC7GxscjKypK7FCKSCC9zkEmCIADN7czRwQEKhULuKoiohRAEAXq9Xu4yzKJSqWT5HGSYINPKy1E1dpLcVZhFvXENoNHIXQYRtRB6vR6bNm2SuwyzxMbGQq22/Z92XuYgIiIiURgmiIiISBRe5iAim4qMjMSvv/4qdxlEJCH2TBAREZEoDBNEZFM5OTmYMmUKcnJy5C6FiCTCMEFENqXT6XDu3DnodDq5SyEiiTBMEBERkSgME0RERCQKwwQRERGJwjBBRDbl6+uLBQsWwNfXV+5SiEgiDBNEZFOtWrVCTEwMWrVqJXcpRM3On3/+KXcJJnHSKiKyqeLiYuzduxdDhgyBh4eH3OUQWZUgCPjjjz+QmZmJrKwsFBYWoqKiAkqlEi4uLggKCkJISAjat28PNze3eve1e/durFu3DjNnzkTPnj1tdgyNwTBBRDZ16dIlLFu2DJ06dWKYoBarpKQEhw4dwp49e1BYWFjnesePHwcAKJVK9OzZE8OGDUPHjh1rPflz9+7d+PLLLwEAK1aswNKlS+Hv72/lo2g8XuawEa1Wi4SEBISHh0Oj0aBdu3aIj49HaWkppk6dCoVCgY8//ljuMiV3UHsZ9ts24v2MC3WuY79tIx45lmTTusRyC/VF1znjMHL7Ijxx7v9hQvo6/G3PMnSOfwxqRwe5yyMimRgMBuzatQsvvfQS1q5dW2+QuHe7X3/9FQsXLsTrr7+O3NxcY9vdQQIARo8eDT8/P6vUbyn2TNjA6dOnERMTg6KiIjg7OyM6OhoFBQX46KOPkJGRgatXrwIAunbtKnep1Ejtn3gYkc8Mxx8/nkDG5iQIVXr4PNAR3f/+JIJHP4AfRs2DvqxC7jKJyIYuX76MTz/9FCkpKTWWR0dHo1u3bggNDUVgYCAcHR1hMBhw9epVZGVl4eLFizhy5AiuXbsGAMjMzMRrr72GuLg4aDQafPXVV8Z9PfLIIxg3blytngu5MUxYmVarxejRo1FUVITZs2dj/vz5cHV1BQAsXboUc+fOhVqthkKhQOfOneUulxop+4dfcHbld6i8ecu4LHXtj7iRVYguM+PQfvzDuPDlLllrJCLbyc7OxuLFi3H9+nXjskGDBmHUqFF1Xo7w8fGBj48P+vbti/Hjx+PEiRPYuHEjCgoKUFVVhW+++abG+k01SICXOazv5ZdfRl5eHqZPn47ly5cbgwQAJCQkoEuXLqiqqkJwcHCDg2+o6bhyJqNGkKiWteUoAMAjMlCGqpoHJycn9OnTB05OTnKXQiSJ3NxcLFy40BgkvL298eabb+L5559v9LgGtVqN+++/H0uWLMHo0aNrtY8ZM6bJBgkwTFhXSkoKNmzYAC8vLyxevNjkOj169AAAdOnSxbjs22+/RWxsLIKCguDk5ITIyEi8/vrrKCkpsVntUrul10NbXm7yv5bE2a81AED35zW5S2myAgMDsXLlSgQGMnBR81dWVoalS5caP5/bt2+PxYsXo2PHjhbtz97eHl5eXrWW29nZNdkgAV7msK7ExEQYDAZMmDABLi4uJtdxdHQE7gkTy5cvR2BgIBYtWoSAgACcPn0aCxYswMGDB3Ho0CEolc0vA76Tmox3UpPlLsOqFEolusyMg6GyCpnfHZa7nCZLr9dDp9PB0dERKpVK7nKIRFm/fr1x7ofQ0FC89tpronrd7h1sWe27775Dr169EBQUJKpea2GYsKL9+/cDd66b1SUvLw+4J0xs27YN3t7extcDBw6Et7c3JkyYgMOHD+PBBx+0at3W8GxgKGL92plsi/nloM3rsYbe70xGm14dcHLRetzIKJC7nCYrPT0dEydOxNq1axEZGSl3OUQWO3/+PPbs2QMAcHBwQHx8vKRB4pFHHoEgCNiyZQv0ej0+/fRTLFq0qEmeUDJMWFFOTg4A1Jkkq6qqcOTIEeCeMHF3kKhWPUFJfn6+2XX07NkTRUVFZm3jqFTifNe+Zr9XXcJdXDDYu61k+zMlIiICOoNBkn3ZCUrMR+9Gr98t4QlETR2B1HU/4veV30lSg7ki2kegUiHN8ZsjLi7OrPUvX74MANi5cydOnjzZqG0effRRi2prSh59ZiacXdxQWFSIgICAWq9buuZ4/Pb29nVeogaALVu2GL8eP3482ra1/DPOVJAYN24cqqqqcPLkSeTl5SE7OxtnzpxBt27d6txPREQEKiosu5PMx8cHJ06csGhbhgkrKi0tBQDodDqT7Rs2bIBWq4WrqytCQkLq3ddPP/0EAIiKijK7jqKiIrNDiJNKBTSzO1ULCgpwS6+XZF/2ChXQyM+FrrPHosusOKQn7sfPCZ9J8v6WKCgsQIUgzfGbo/rnvLGqfx90Ol2jt7UkRDc1hjs/mwa9Hvn5+bVet3TN8fgdHOqeM6aoqAhnzpwB7pwADhs2zOL3qStIKBQK2NnZ4YknnsDy5csBAD/++GO9YaKgoADlMoxFY5iwIh8fHxQXF+PUqVPo27fmWX5hYSHmzJkDAOjcuXO9A2vy8/Px5ptvYvjw4RbNReHj42P2No5NsButIX5+fpL2TKARu+o6eyy6vjoWFzf8hCOzP5XkvS3l5+snS8+Es7OzWetXBwhHR8dGb9uUZvqzlPLO+BClSgV/f/9ar1u65nj89vb2dbZVn+ABwNChQy2+9FBfkKjWvXt3eHl5QavV4vTp07hy5Qpat25tcn9+fn6ieiYsxTBhRUOGDEFKSgreffddDB06FBEREcCd6VOffvppaLVaoIHJqkpKSjBmzBjY29vjiy++sKgOS7qthLIyVI2dZNH7ySUtLQ0KjUaSfVXeKsP6sKfqXafLrLjbQeK/B3F41ieAIEjy3pZKS0+DnZM0x2+O6umAG+vChQtITExETExMo8dMfPDBBxZW13Qs+td63Cgpha+PL/Ly8mq9buma4/FXVVVh06ZNJtsuXPi/WX0tHcfWmCCBO1NtDxgwAN999x0EQUBaWlqtE9RqaWlpUKtt/6edYcKKEhIS8PXXXyM3NxcdO3ZEZGQkysrKcPHiRcTExCA4OBi7d++uMV7ibjqdDqNHj0ZWVhaSkpL4yOYmJHLycHRLeAIleX+iMOksQh/rX6Nd9+d1FB46K1t9TVl4eDh2795dY84VoubEYDAgOzsbANCmTRu4u7ubvY/GBolq4eHhxq8zMzPrDBNyYZiwooCAACQlJWHOnDk4ePAgsrOzER0djVWrVmHatGkICwsD7hl8Wa2yshJxcXE4ceIE9u3bh+joaBmOgOri1fX2v51LgDcGfDSjVnvR0WSGiTqo1Wo+4IuatcLCQuO4hIbGu5libpDAndtOq1UHmaaEYcLKoqKisH379lrLS0pKkJ2dDaVSifvuu69GW/XcFPv27cOOHTvQu3fj7ypoagZ6tUHF6LH1rtNQe1N0eOa/cHjmv+Quo1nKy8vDihUrMGvWrCY7ip+oPndPIFjX2IW6WBIkAMDDwwNKpRIGg8HsQc+2wDAhk+TkZAiCgIiIiFr3Jb/00kv473//i7///e9wcnLCL7/8YmwLCwszeesoUXNRUlKCpKQkTJs2Te5SiCzSrl07vPXWW6isrDQrTFRUVGD37t3G1+Y+a2POnDlQq9V1ToIoJ4YJmfz+++9AHZc4du7cCQBYsmQJlixZUqPtyy+/xOTJk21UJRER3cvJycmiS8/29vZ444038I9//AN9+vQx+1kb9d0SKjeGCZnUFyaa4vUwIiISz9PTE//85z/h6OjYpJ+1YS6GCZnUFyaIiKjlaolPzGWYkEn1czuI/mq8vb0RHx/PsT9ELQjDBBHZVOvWrTFhwgS5yyAiCTW/OZOJqFm7ceMG9u7dixs3bshdChFJhGGCiGyqoKAA8+bNQ0EBH9NO1FIwTBAREZEoDBNEREQkCsMEERERicIwQUQ25eDggA4dOsDBwUHuUohIIrw1lIhsKiQkBOvWrZO7DCKSEHsmiIiISBSGCSKyqdTUVPTr1w+pqalyl0JEEmGYICKbEgQBlZWVEARB7lKISCIcM0GmOThAvXGN3FWYR8IBfWpHB0zI+I9k+7MFtSMHNBJJSaVSITY2VrL9LVu1ATdLS+Hq7Iw5z4+r9VoKKpVKkv2Yi2GCTFIoFIBGI3cZslEoFLBz+usePxHd/hxQq6X7MykAMAi3/69Wq2u9bs54mYOIiIhEad5RiIianeDgYCQmJsLf31/uUohIIgwTRGRTGo0GYWFhcpdBRBLiZQ4isqnCwkIsXLgQhYWFcpdCRBJhmCAim7p+/Tq2bt2K69evy10KEUmEYYKIiIhEYZggIiIiURgmiIiISBTezUFEovTq1cus9QMCAjB//nwMGTIEvr6+VquLiGyHYYKIbMrX1xdvv/223GUQkYR4mYOIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCSIiIhKFYYKIiIhEYZggIiIiURgmiIiISBSGCQIArFu3Dj169ICHhwccHR0RFRWF999/H4IgyF0aEdVhx44d6Nq1KxwcHBAcHIz3339f7pJs6tChQxgzZgyCgoKgUCiwcOFCuUuyqWXLlqFv377w8PCAu7s7+vfvj127dslSCx/0RQCANm3a4M0330SHDh3g4OCApKQkvPjii1CpVIiPj5e7PCK6x4kTJzBmzBi8+uqrSExMxLFjx/DCCy/AyckJL7zwgtzl2URJSQmio6Px5JNPYubMmXKXY3P79+/HlClT0KtXLzg5OWH16tUYNWoUDh48iH79+tm0FoYJAgD8z//8T43XoaGh+P7773HgwAGGCaIm6P3330evXr2wePFiAEBUVBSSk5OxZMmSv0yYGDFiBEaMGAEAmDt3rtzl2NzOnTtrvF66dCl27dqFzZs32zxM8DIH1SIIAn799VccOXIEgwYNkrscIjLhyJEjGD58eI1lw4cPR05ODvLy8mSri+RjMBhw48YNODs72/y92TNBRtevX4e/vz8qKipgMBgwf/58vPzyy3KXRdSs3NKVIa9IW2t5lV5v/H9aVl6t13fza9saLk6O9b5PYWEhfHx8aiyrfl1YWIiAgADRx2KprNxCVFbpaywz5/hdnDTwa+tlw4qldaX4Bq5cu1FruTnfg7BAP6hU5p3vL1q0CNeuXcNzzz0nqn5LMEyQkaurK06fPo1bt27h6NGjeO211+Dn54epU6fKXRpRs+Fgb48fDx1HXtGfJttv6crwxcYddb5u6+WB6ZMetUmt1lJw6Qq27Ttqsq2h41cAmDZ+lE3qtBaVSomvt+xFWXmFyfaGvgc97otARIh5YfCTTz7BokWLsHXrVlmCJC9zkJFSqUR4eDg6d+6MF154AQkJCXj99dflLouoWVGplBg7ahDUapX52ypvb2unbvg8z9fXF0VFRTWWXbp0ydgmp749OiI8yN+ibfv36ozQQD/Ja7IldzcXjBlq2ZgFdzcXjB7ygFnbLF++HHPmzMHWrVsxZMgQi95XLIYJqpPBYEBZWZncZRA1O21au2PEQ33M3m5I/x7wb2T3fr9+/bB79+4ay3bt2oWgoCBZL3EAgFKhwOMjBkLjYG/Wdm29PDDswZ5Wq8uWukaHo3NkqFnbKACMHTXIrO/bW2+9hQULFmDHjh2yBQnwMgdVmz9/PgYMGIDQ0FBUVlbi0KFDePfdd/HMM8/IXRpRs3R/945IuZiD9Oz8Rq0f5N8WA/t0afT+Z82ahQceeACvv/46nn76aRw7dgwrV67EihUrRFQtnVZuLnhkWH98s21/o9ZXKZUYN/rhRvXKVCspKcHFixcBABUVFSgqKsLp06fh4uKC8PBwi2uXgkKhwCPD+iMrrwg3S241apsBvTsjtF3je5VmzpyJVatWITExER06dDD2VDk6OqJVq1YW124JhcBZiejOB9O2bduQn58PjUaD0NBQTJkyBS+88AJUKvO7a4kIuH6zFB988S10ZeX1rmdvp0b8M3Fo7eFm1v5/+OEHzJs3DxcuXICPjw/i4+PxyiuviKxaWl9v2YuzFzIbXG/4wN546P6uZu37wIEDJu84GzhwIA4cOGDWvqwlLTMXX/x3Z4Pr+Xh7YvrER826PKZQKEwunzRpEr766iuz6hSLYYKIyIrOnL+IxAbOzh8b/iB6d4m0WU22dEtXhg+++BY36jk7Dw7wwXPjR0GpbJlX3r//8TB++e18ne0qlRLTJz4K3zatbVqXlFrmvxxZzS1dGfIKTY9SJ6LaukSHo0tUWJ3tUeGB6NW5g01rsiUnRw3iRjxUZ7u9vR0eH/lQiw0SADDioT7w8qz7ssOwAT2bdZAAwwSZK+n47/h47Xf4Yf8vcpdC1GyMGdYfbi61JxJydtTgseEP1tld3VJEhASgb/eOJttGP9wXrd3Nu7zT3Njb22HcyEFQmvh3Dg7wwYBenWWpS0otJkwoFArjL+S2bdswYMAAuLm5wcvLC3FxccjIyDCuu337dgwcOBDu7u5wc3PDmDFjkJ6eXue+y8vL8eGHH+KBBx6Au7s7NBoNOnTogDlz5kCrrT05DQAcO3YMc+fORa9eveDj4wMHBwf4+/tj7NixOH78eJ3vtWPHDowYMQJt2rSBnZ0dWrdujaioKEyZMgVHjhwR9T0Sq1RXhqMnzwF3fgGIqHGcNA54fMTAWssfG/4gXJ2dZKnJ1mIe6gPve87Oo8KD0LMF98rcrZ1fGwx6oFuNZfb2dhjbQnplWsyYieog8fHHH2P69Onw8/ND27ZtceHCBeh0Ovj7++O3337D+vXrMWvWLPj6+sLHx8fY7uPjg7Nnz8Lb27vGfi9duoSYmBj89ttvUCqVaNeuHdzc3JCWloby8nIEBgbip59+QmhozVuAwsPDkZGRAU9PT/j6+sLe3h5//PEHrly5ArVajW+++QaxsbE1tvnkk0/w0ksvAQBat26NoKAg6HQ65ObmoqSkBM8//zz+/e9/W/17WZfdh47jp59/g2+b1nh58mMt/myKSGpb9x7B0ZPJAIAenSLweD3d/y1RbuFlfLpuCwyCAGcnDWZNeRwuzvXP9NmS6PUGfPqfLcYJzeJiBracMCW0EAAEAIKTk5OwZs0a4/IrV64IvXr1EgAIo0aNEhwdHWu0a7VaoUePHgIAYe7cuTX2aTAYhIEDBwoAhJEjRwpZWVnGtps3bwpTpkwRAAh9+/atVc+aNWuE9PT0Gsv0er2wefNmwcXFRXB3dxdu3rxpbKusrBQ8PDwEAMInn3wiVFVV1ajj4MGDwubNmyX4Tlmm5JZOeOv9L4S5S1YJ51KzGrEFEd2rvKJSWP7ZBmHJp18LurJyucuRxZ6kE7c/R9L+mp8jl7XFwhvLVwtrNu0SDAaD3OVIpsX1TMyYMQMfffRRjbZdu3YhJiamzvadO3dixIgR6Ny5M86cOWNcvmPHDowcORL33Xcfjh8/Do1GU2M7vV6P3r1749SpUzh8+HCjn9L25ptvYuHChUhMTMQTTzwBACgqKoKvry88PDxw9epVC78Lpq1csxk3S3Si9lFeUYHyikoolcoGnxlARHXT6/UQAKj/ordcC4KAysoq2NvbyV2KbCoqq6BWqaBUNq3eXVcXR8yY9JhF27a4SaueffbZWsu6d+/eqPbMzJr3Qm/atAm4c8/uvUECAFQqFf72t7/h1KlTOHDgQK0wkZ6ejm+++QZnzpzBlStXUFlZCQC4fPkyAOD06dPGMOHt7Q2NRoNr165hz549GDp0qEXHb8rNEh1ulJRKsi+DwSDZvojor6uswvRzK6h5anFhIiys9i1Yd4+DMNXepk0b4M5sanc7e/YsAODLL7/E999/b/L9qufCz8+vOcvde++9h7///e+oqqqqs9YrV64Yv1apVIiPj8e7776LYcOGoXv37hgyZAj69++PgQMHws3N8tHOri7iehLYK0FE1PKJ+VvR4sKEqee43z1QsKH2u127dg0AcP583ZONVLt16/8mZDly5AheffVVqFQqLFy4EGPGjEFwcDCcnZ2hUCjwxRdfYOrUqcaeimqLFi1CQEAA/vWvf+HUqVM4deoUli5dCgcHBzz55JNYvnw5PD09G6zlXpZ2W+HOHRxL/50IAJgwZgg6RgRbvC8iImqZWlyYkJKLiwsAYOvWrRg9enSjt1u3bh0AYPbs2Safunl3j8TdlEolpk+fjunTpyMvLw9JSUnYs2cPNm7ciC+//BK5ubnYs2eP2cchZszE3b0SW/YcwZY98t6eSkRE1sExE1bSsWNHnD59GufOnTMrTGRlZQEA+vfvb7L9l18anvApICAA48ePx/jx4zF79mx06tQJe/fuRVZWFkJCQsw4CmnGTHCsBBER1YVhoh5xcXFYv349PvvsM8yYMcPYU9EQR8fb152qn+B2t/T0dGzfvt2sOjp27IhWrVrh2rVrKCgoMDtMWHodjGMliIj+OkSNr5P73lSpVM8zIWX73fNM9O3bV/j9999rtOv1euHo0aPC888/L2RkZBiXL1++XAAghISECBcvXjQuP3funNChQwdBo9EIAIRJkyYZ25KTk4Vnn31W+Pnnn2vce1xVVSWsWLFCACBoNBqhuLjYjO+K5TivBBERNVaLm2eirsOxtF2r1WLMmDE4evQoACAoKAg+Pj7Q6XTIyMhAaentrv+UlBRERt5+6t/NmzfRvXt3XLx4EXZ2dujQoQMMBgNSUlLg6+uLF198EW+88UaNx8SePn0a3brdnmrV1dUVYWFhUKlUyM7ONo6x+OSTT/C///u/Eny3GsbZLomIqLGa/4TgVubl5YWDBw/iq6++wtChQ1FaWooTJ04gKysL4eHhiI+Px8GDBxEREWHcxtXVFYcPH8aUKVPg4eGB1NRU43TYp06dgr+/f633iYiIwOrVqzFu3Dj4+voiMzMTZ86cgUajweOPP46kpCSbBYm7n8ExpF8PBgkiIqpXi+mZIOlcuXYD3+9OQsmtMvZKEBFRgxgmqE5l5RXQONjLXQYRETVxDBNEREQkCsdMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJwjBBREREojBMEBERkSgME0RERCQKwwQRERGJ8v8B5CE/UYmMla0AAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 663.998x367.889 with 1 Axes>"
|
||
]
|
||
},
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from qiskit import QuantumCircuit\n",
|
||
"from qiskit.circuit.library import GroverOperator, Diagonal\n",
|
||
"from qiskit_ibm_runtime import QiskitRuntimeService\n",
|
||
"from qiskit_ibm_runtime.fake_provider import FakeSherbrooke\n",
|
||
"\n",
|
||
"# Create circuit to test transpiler on\n",
|
||
"oracle = Diagonal([1] * 7 + [-1])\n",
|
||
"qc = QuantumCircuit(3)\n",
|
||
"qc.h([0, 1, 2])\n",
|
||
"qc = qc.compose(GroverOperator(oracle))\n",
|
||
"\n",
|
||
"# Add measurements to the circuit\n",
|
||
"qc.measure_all()\n",
|
||
"\n",
|
||
"# View the circuit\n",
|
||
"qc.draw(output='mpl')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "24622567-920c-48d9-aeba-d85a8dd34788",
|
||
"metadata": {},
|
||
"source": [
|
||
"Transpile the circuit and view the result:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "27ab746b-e3d7-49a7-b40b-d1e2d9ca6088",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABvAAAAUBCAYAAABaFsbKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUdfr38c9MeqUFSGgJgQQCUqQpAkIUC00UuzTXtqIIq/5gxXUF3UeQ4qKCuuAqRVhkRVCaiqJIWxGkSichQBoYanqbef5ABmISSJlkzsy8X9fFdZHT5p4533LP3DPnmKxWq1UAAAAAAAAAAAAADMHs6AAAAAAAAAAAAAAAXEYBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBVFkBr1evXvrLX/5S5fsY9RgAAAAAAAAAAABARVSogJeamqrRo0erefPm8vX1Vf369dWtWzd98MEHysrKsn+UdvToo4/KZDLJZDLJ29tbzZs31+uvv66CggJHh1ZuH3zwgdq2bavg4GAFBwera9eu+uqrryp0rD/96U965ZVXii1/8803ZTKZKGgCAAAAAAAAAABUE8/y7hAfH69u3bqpZs2amjhxotq0aSMfHx/t2bNHs2fPVsOGDXXXXXdVTbR2cuedd2rOnDnKzc3V6tWr9eyzz8rLy0vjxo1zdGjl0qhRI7355puKioqS1WrVvHnzNHDgQO3YsUOtW7cu83EKCwu1cuVKrVq1qsjyrVu3atasWWrbtm0VRA8AAAAAAAAAAICSlPsXeM8884w8PT21bds2PfDAA4qJiVFkZKQGDhyoVatWacCAASXul5ubq1GjRqlevXry9fVV9+7dtXXr1mLbFRQUaOTIkapRo4ZCQkL097//XVarVZL09ddfq3v37qpZs6bq1Kmj/v37Ky4urtxP2sfHR6GhoQoPD9eIESPUu3dvLV++vMg2FotFY8eOVe3atRUaGqoJEybY1pUljiVLlqhNmzby8/NTnTp11Lt3b2VmZtqOPWnSJDVt2lR+fn5q166dlixZUu7nMWDAAPXt21dRUVGKjo7WG2+8ocDAQP3000+2bWJiYmy/OPzjv5kzZ0qSNm/eLC8vL3Xu3Nm2X0ZGhgYPHqwPP/xQtWrVKndsAAAAAAAAAAAAqJhyFfBOnz6tNWvW6Nlnn1VAQECJ25hMphKXjx07Vp9//rnmzZun7du3q3nz5rrjjjt05syZItvNmzdPnp6e+vnnn/XOO+/on//8p/79739LkjIzM/XCCy9o27ZtWrt2rcxms+655x5ZLJbyPI1i/Pz8lJeXVyyOgIAAbdmyRVOmTNHrr7+ub7/9tkxxpKSk6OGHH9Zjjz2m/fv3a926dRo0aJCtEDlp0iTNnz9f//rXv7R37149//zzGjJkiH788Ufb48+dO7fU17IkhYWF+vTTT5WZmamuXbvaln/++eeSpLVr1yolJUUJCQkym8367LPP9OSTT0qSli9frgEDBhR5vGeffVb9+vVT7969K/iqAgAAAAAAAAAAoCLKdQnNI0eOyGq1qkWLFkWWh4SEKCcnR/q98DN58uQi6zMzM/XBBx9o7ty56tOnjyTpww8/1LfffquPPvpIY8aMsW3buHFjTZ8+XSaTSS1atNCePXs0ffp0Pfnkk7r33nuLHPfjjz9W3bp1tW/fPl133XXlfvJWq1Vr167VN998o+eee67IurZt22r8+PGSpKioKM2cOVNr167Vbbfdds04UlJSVFBQoEGDBik8PFyS1KZNG+n3XyJOnDhR3333na3QFhkZqY0bN2rWrFnq2bOnJKlGjRrFXueS7NmzR127dlVOTo4CAwO1bNkytWrVyrb+5MmT8vT0VLdu3eTj46NffvlFFotFPXr0kI+PjyTpyy+/1PTp0237fPrpp9q+fXuJv5AEAAAAAAAAAABA1Sr3JTRL8vPPP2vnzp1q3bq1cnNzi62Pi4tTfn6+unXrZlvm5eWlLl26aP/+/UW2vfHGG4v8Eqxr1646fPiwCgsLdfjwYT388MOKjIxUcHCwIiIiJEnHjx8vV7wrV65UYGCgfH191adPHz344INFLpGp3wt4VwoLC9OpU6ck6ZpxtGvXTrfeeqvatGmj+++/Xx9++KHOnj0r/V4EzcrK0m233abAwEDbv/nz5xe5DOc999yjAwcOXPO5tGjRQjt37tSWLVs0YsQIDR8+XPv27bOt37Nnj6Kjo23Ful27dqlevXqqX7++JGn//v1KTk7WrbfeKkk6ceKERo8erYULF8rX17dcrysAAAAAAAAAAAAqr1y/wGvevLlMJpMOHjxYZHlkZKT0+6Uoq9KAAQMUHh6uDz/8UA0aNJDFYtF1111X7PKX1xIbG6sPPvhA3t7eatCggTw9i78MXl5eRf42mUy2S2ReKw4PDw99++232rx5s9asWaMZM2bob3/7m7Zs2aKMjAxJ0qpVq9SwYcMij3GpyFYe3t7eat68uSSpY8eO2rp1q9555x3NmjVLkrR7927br//0ewHvyr+XL1+u2267zVas++WXX3Tq1Cl16NDBtk1hYaHWr1+vmTNnKjc3Vx4eHuWOEwAAAAAAAAAAAGVTrl/g1alTR7fddptmzpypzMzMMu/XrFkzeXt7a9OmTbZl+fn52rp1a5HLPUrSli1bivz9008/KSoqSufOndPBgwf1yiuv6NZbb1VMTIztV23lFRAQoObNm6tJkyYlFu+u5vTp02WKw2QyqVu3bnrttde0Y8cOeXt72y5v6ePjo+PHj6t58+ZF/jVu3LhCz+dKFoulyK8gd+/eXeTXhLt27Sry95dffqmBAwfa/r711lu1Z88e7dy50/avU6dOGjx4sHbu3EnxDgAAAAAAAAAAoIqVr3ol6f3331e3bt3UqVMnTZgwQW3btpXZbNbWrVt14MABdezYsdg+AQEBGjFihMaMGaPatWurSZMmmjJlirKysvT4448X2fb48eN64YUX9Oc//1nbt2/XjBkz9NZbb6lWrVqqU6eOZs+erbCwMB0/flwvvfRS5Z59BZQlji1btmjt2rW6/fbbVa9ePW3ZskW//fabYmJiFBQUpP/7v//T888/L4vFou7du+v8+fPatGmTgoODNXz4cEnSsmXLNG7cuKteRnPcuHHq06ePmjRpovT0dP3nP//RunXr9M0330i/F/P27t2rV1991bZPXFycBg0aJEk6deqUtm3bpuXLl9vWBwUFFbufYEBAgOrUqVOh+wwCAAAAAAAAAACgfMpdwGvWrJl27NihiRMnaty4cUpMTJSPj49atWql//u//9MzzzxT4n5vvvmmLBaLhg4dqvT0dHXq1EnffPONatWqVWS7YcOGKTs7W126dJGHh4dGjx6tp556SiaTSZ9++qlGjRql6667Ti1atNC7776rXr16VfzZV4DZbL5mHMHBwVq/fr3efvttXbhwQeHh4XrrrbfUp08fSdI//vEP1a1bV5MmTVJ8fLxq1qypDh066OWXX7Yd4/z588UuVfpHp06d0rBhw5SSkqIaNWqobdu2+uabb3TbbbdJvxfrsrKyivzirk2bNho/frw6duyoAwcOqEuXLgoJCamCVwoAAAAAAAAAAAAVYbJarVZHBwHHuOuuu9S9e3eNHTvW0aEAAAAAAAAAAADgd+W6Bx5cS/fu3fXwww87OgwAAAAAAAAAAABcgV/gAQAAAAAAAAAAAAbCL/AAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA/F0dABwL1arlFPo6CjKx9dDMpnscyyr1aqC7Fz7HKyaePr5yGSvFwBuzRnb/5Xs1ResVquysgvsElN18ffztNs44O7zAADAvTlzPmS/XIhcwBnbAe8LAQAAqh8FPFSrnEKpx2pHR1E+G/pKfnbqKQXZuVrYbIh9DlZNBsctkJe/r6PDgAtwxvZ/JXv1hazsAgXeON8uMVWXjJ+GKcDfyy7Hcvd5AADg3pw5H7JXLkQu4JztgPeFAAAA1Y9LaAIAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABiIp6MDAMoifc86HXoltsgys2+AfBpEq06voarX/zmZPGjOAOCqmAcAAHBv5AIAAABwN2S3cCq1bn5YNTr2laxW5Z9N1el185X48QvKSdyv8GdnOzo8AEAVYx4AAMC9kQsAAADAXVDAg1Pxj+ygOr2G2P6u2/cZ7X2mpdK+/bcaDHlDXjXqOjS+6vZoyhK7HWtu2H12OxYAVBXmAQAA3Bu5QFG8JwQAAHBdFPCcRFpamqZOnarVq1crPj5eBQUFCg0N1c0336znn39eHTp0uOr+X3zxhT766CNt27ZNZ86cUe3atdWyZUv17dtXY8aMqbbnYW8evgEKaHGjzm1eotzUOLd6sxbQMEQ/j5+rfbNXOjoUAHAYd54HAACAe+cCvCcEAABwbWZHB4BrO3jwoNq0aaMpU6Zo3759CgsLU0xMjM6cOaMFCxaoS5cuWrhwYYn75uXl6f7779c999yjlStXyt/fX+3atZO3t7c2bNigyZMnV/vzsbfc1DhJkmdgbUeHUq0a39ZJJ9Zsc3QYAOBw7joPAACAi9w1F+A9IQAAgGujgOcERowYodTUVLVo0UJ79+7VkSNHtHPnTqWmpuqpp55SYWGhnn76aZ05c6bYvk888YSWLFmiO++8U0eOHFFcXJx+/vlnHTt2TGlpafr4448d8pwqypKbpYILaco//5uyE/bo+L+eVXb8DvlHdZFvw2hHh1etgiNDlZ6Q6ugwAKBaMQ8AAODeyAUu4z0hAACAa+MSmgaXnp6udevWSZKmTp2qli1b2tYFBATovffe09KlS5WWlqb169fr7rvvtq1fs2aNPvnkE91www1asWKFPD2Lnu6aNWvqrrvuqsZnU3kpi8YrZdH4Istqdh2kJn9+z2ExOYKnv6/yM3IcHQZgfyaTWj3ZTy2G3qbARnWVc/qCjq7YrJ1TFqsgO9fR0RnKG6M66uUn2uuxV9drzheHi63/4aO+6tqunjo+9KX2HjnrkBirAvMAAMClkQtdE7nARbwnBAAAcH1OU8BLS0vTlClTtHTpUiUmJqpu3boaNGiQJk6cqFGjRunjjz/WjBkzNHLkSEeHKkmyWq0ymUyVPk5ubq6sVqskKTIysth6T09PhYeHKy0tTfn5+UXWTZ8+XZL0yiuvFCveOauQO55SrZvul7UwX9nH9ih16WTlpSXK5OVr2yZ97wYdeb1PsX2tBXmyWgrVcVlhNUdtfw16tlXSj7scHQZgd11ef1StnuinY6u36Nd/rVDNqIZq9Xhf1bmuqb554HXp9/EQ0oT3d2hAzyb65//doDX/S1LSySzbur8Maa1encP00ttbXap4J+YBAICLIxe6NnKBi3hPCAAA4Pqcoqqzc+dO9enTR6mpqQoICFCrVq2UnJysd999V3FxcbZLR7Zv377KYujVq5d+/PFHHT16VBEREVfddvfu3Ro2bJiWLFmi5s2bV+pxQ0JC1LBhQyUlJWnz5s1q3bp1kfVnzpzRgQMHZDab1aFDB9vy7OxsfffddzKbzYqNjdWWLVs0Z84cHTlyRIGBgbrxxhv1xBNPKCQkpFLxVTefsCgFt+8tSarRsY8CY7rr4LjuOv7B04oc86kkKah1D12/OKPIfnmnk3XgxU6q288YBd7Kqte5pX75fwuKLOsw7hG1HTVIG59/X0c+/b7YPnd+/prqdozWijvG6tzBE9UYLVA2NaMbKeaxPkpY9ZPWPTHNtjz9+Cnd+Mbjanp3Nx1dttGhMRpJfoFFw19Zry0L7tJHE3rozhHfSJKiI2rojec66afdpzR17h5Hh2l3zAMAAFdFLlQ25AIX8Z4QAADA9Rn+HnhpaWkaMGCAUlNT9eKLLyolJUXbt29XamqqJk+erFWrVmnr1q0ymUxq27ato8OVJM2ZM0e7du1SbGys4uPjK328iRMnymQyacyYMZozZ45OnjypzMxMbdq0Sf3791dmZqZeeOEFNWvWzLbPrl27VFBQoDp16mjmzJnq2rWrZs2apbVr1+rLL7/UuHHjFBUVpR9++KHS8TlSYMxNqt1rqM5uXKyM/ZtL3MaSn6v4NwcpsFV3hd3/crXHaHcmk2SSrBZLkcU7p/1XZ/cfU5cJw+UfVvTm7a2e6q/Qm1pr57TFvFGDYTW9p7tMZrP2fbiqyPLDC79TflaOmt17s8NiM6od+09r0ke7dEe3Rnry3hYym02a/8bNMpmk4a+sl8Xi+t/Sd8t5AADgksiFKsYtcwHeEwIAALgFwxfwRo0apcTERI0cOVLTpk1TUFCQbd3YsWPVrl07FRQUKCIiQsHBwQ6N9ZK33npLQ4cOVWJiomJjY5WQkFCp4w0bNkzLli1TVFSUHnvsMYWGhiowMFDdu3dXcnKy5s+fr6lTpxbZJyUlRZJ09uxZvfTSS+rbt6/27t2r3Nxc7d69W7fccovOnTunQYMGKTExsVLxOVrYg3+XzB5K/s+rJa4//v7TsuTnKGL03GqPrSrUvb650nYcKbbckl+gDaNnytPfR93++YxteXCzBurw0sP67ZdD+vX95dUcLVB2Ie2by1JYqLQdRe/nVpibrzO/JiikfbNS93Vn/5i9QzsPnNa0F7toxriuuqFNPf1txi86lHDe0aFVG3ebBwAArolcqOLcLRfgPSEAAIB7MHQBb//+/Vq8eLFCQkI0adKkErfp2LGjJKldu3a2ZZcKfl26dJGPj49d7kV35bETEhKu+u/48eOaMGGCbrnlFh0/flyxsbE6fvx4hR/TarUqLi5Ov/32m8xmsyIiItS2bVv5+/vr2LFjmjVrlvbv319kn8zMTElSQUGBmjVrpmXLlqlVq1by9vZWmzZttGLFCoWGhurcuXN6++23K/26OJJvWHPV7vGQ0nevVfreDUXWnVrxrs5vW6lm476Q2cffYTFWVP0bY2TyKNpNG8Zer6Qfdpa4/Zk9R7V7xjI17NVe0UN6y2Q2q8e7z0mSNoyeWewbmoCR+Nevpdwz6bLkFRRbl5V6Rr51asjs5RRXfq5WBQVWDX9lvXx9PPTMgzHasD1Vby/41dFhVStXngcAAO6DXKjiXDkX4D0hAACA+zJ0AW/RokWyWCwaPHiwAgMDS9zGz89P+kMB78iRI/r8888VGhqqzp072zWmHj16qGnTptf816xZM33//cVrzickJGjIkCEVfswRI0boxRdfVL169bR//34dPXpUu3btUlpamsaMGaNNmzapa9euOnHi8mUwfH0v38B75MiR8vLyKnJMf39/jRgxQpL09ddfVzg2owi9/2+S2VzkG5fpu39Q4vy/KnLsZ/Kpf/X7FhpRxF03qfcnL6v+DTFFlnsF+ys/PavU/XZNX6Izvx5Vp1eH6YY3HlPdDlHaPnmRLsQlV0PUQMV5+PmoMC+/xHWFuReXe/p5V3NUzuF8Rp5y8wolSas3nJDV9a+cWYwrzgMAAPdCLlQ5rpgL8J4QAADAOVmtVmVmZiozM1PWSnxQZ+iv710qgMXGxpa6zaXLP15ZwLv55pttl5CcMGGCNm3aZLeY2rRpI2/vsr1pOn36tO3ymTExMdfcviS7du3S7Nmz5eXlpc8++0zh4eG2dX5+fpoyZYq2b9+utWvXauLEifrggw8kSbVq1bJtV9pjX1p+9OjRCsXWqVMnpaamlmsfk7ef6r99uAxbFhXUppc6fll6Q/drHKOOywptf+eeTFD81AfU6NGpCmrTq9yPd6Xo6ChZ87IrdYxLvKxmjVeXMm2bsHyzgpuGqvEdnZW6ea8kKaBhiDITf7vqftaCQm0YPVP9v3pTLR+9Uye37Ne+2auuus/VREdFK9/EtzRReddq/4XZufIKqFHiOg+fi19CKMjOq7L4rsVefcEiL6n2K3aJ6ZI5r/eQt5eH9sWd1StPtdd/vzmq+MR0ux0/KjpaZpX8gWJ5ufs8AABwb1fLh9wlFyIXKPv7QqO8JxTvCwEAAMrFYrHYalTt27fXjh07KnQcQxfwjh07JklFilZXKigosBXnrizgmc1V98PC5cuXKyLi2t/cS0xMVM+ePSVJDz74oN5///0KPd6mTZtktVoVFRVV6utw++23a+3atdq6dattWcuWLW3/L63geOlXeoWFhSWuv5bU1FQlJSWVax+zj7/qV+jRys6Sm6W4SXerRpe7VK/fyEofLzk5WZbc0r/dWB7eJg+V5wU49tXPunXuX7V1/MV7NTS+rZNOrNl2zf3yL2TJklcgD28vJa7drsr8HCc5JVl51oq1EeBK12r/WSfPqkZ0I5m9PYtdOso/tLZyTp+XJb/4JaWqi936gslbqm2PiC567pFWiu3SQC+/u01f/nBM2xffrY9f76Fej62222OkJCdLVvt8YOju8wAAwL1dLR9yl1yIXKB87wuN8J5QvC8EAACosJMnT1Z4X0MX8C7dxy07u+Rvui1evFhpaWkKCgpS06ZNqzm60iUlJSk2Nlbx8fG67777tGDBAnl4eFToWOnpZf8FRU5Oju3/DRs2VJMmTXT8+HHFx8eX+CvGuLg4SVKjRo0qFFtoaGi59zF5+1Xoscrj7ObPlX10l3KSDunsxsXF1reeuU/edZuU+XgNGjSw6y/wVI4vLZ4/lChZpZrRjXTuUKKCmoYqfe61O3y3t5+V2ctT5w6dUNu/3KuE5ZuVfqxiA0WDsAZ80xJ2ca32n7bziBr2aq+Q66N0asvl+3p6+Hip9nUROvnT/tJ3rgb26gsWeSnFLhFJzZsEa9LoTvp5z2+a/PFuWSxWTfhguyaN7qznHmmlGf/ZZ5fHCWvQwK6/wKtqRp4HAADu7Wr5kLvkQuQC5XtfaIT3hOJ9IQAAQLlc+Qu8+vUr/vU1QxfwQkNDdfbsWW3fvl1du3Ytsi4lJUVjxoyRJLVt21Ymk8lBURb32muv6ciRI7rnnnu0aNEieXpW/GWOjo6WJB0+fFjHjh0r8Vd4a9askSS1aNGiyPIHHnhA06ZN07x58/T4448XWWe1WjV37sVv8N1yyy0Vim3btmt/6++PsgukHvb7UUiJ6sQOVZ3YoXY73qFDh+Vnp56Sn5Wjhc3Kdz/EE99uU+M7OisjMU35Gdd+0xjzeF+FdbtOv0z6j058/bMGrJmqbtOf0deDxlco5kOHD8nL37cMWwJXd632f/TLzWo7apBaPdmvyIdWUYN7y8vfV/FL11dTpCWzV1/IzMpX4I3zK30ck0ma+4+b5WE2afgrP8piufit6ilz9mjQrRGaNLqTVq0/YZdLaR4+dEgB/l5l2PLa3H0eAAC4t6vlQ+6SC5ELlP99oaPfE4r3hQAAAOWSmZmpwMBASdLGjRsrfJyqu9akHfTu3VuSNHnyZB06dMi2fOvWrYqNjVVaWpr0+zVEq1rPnj117733KiAg4JrbvvPOO3rttde0ePHiShXv9PvlMevVq6f8/Hzdf//9RV6H7OxsjR07VmvXrpUkDRs2rMi+Y8aMUXBwsDZs2KB//OMftktlFhQU6K9//at27dolHx8fPf/885WKEVXrxJptanx7JzXo1U7J63dfddugpqHq8PIj+m3HYf068wudO5SonW/9V6FdWyvm8b7VFjNQEecOHNeBOV8rot+Niv1ojKIeuVWdxg9TlwnDlbp5r+KXVnyyc0UvDm+jbtfX16vvb9eBo+dtyy0Wqx79+3p5epj18es9HBojAAAoO3IhlIb3hAAAAO7J0AW8sWPHqk6dOjpx4oRat26tNm3aKCoqSl26dFFkZKTtl2NX3v+uqrz22mtasmSJ6tate81t/fz89Oqrr8rLq/K/VggICNDChQsVEBCgrVu3KiYmRpGRkWrXrp1CQkI0depUSdKzzz6rgQMHFtm3Xr16+vTTT+Xj46NXX31VYWFhuuGGGxQaGqqpU6fK09NT//73vxUTE1PpOFF1Tm7Zr+DIMIX36aLfth4sfUOTSd3fHimz2ayNo2fKarl4eZNf3/tSaTuPqMPLjygovKrvNgFUzs+vztXWCfNUM7qRbpz4hJoO7Kb9H3+l74ZOqvR9O1xJy6Y19I9nO+h/u07prXm/Flu/L+6cJnywXT07hem5R1o5JEYAAFB+5EIoCe8JAQAA3JOhC3iNGjXShg0b1K9fP/n6+iohIUG1a9fWrFmztGrVKtuv0aqjgOdIvXv31u7duzVy5EhFR0crNTVV+/fvV40aNTRw4ECtXLlSM2fOLHHfPn36aMeOHRoyZIg8PT21Y8cOeXp66oEHHtCWLVs0ZEj5LueI6mcttChp3a6L/7eUfs+B1k8PUP0uLbVj6mKdP5x0eX+LRRtHz5TZw0Pdpj9TLTEDFWW1WLR31got6zFan0Q8rM86/FlbJ8xTQVZOGfZ2HweOnpdf53m6aegK26Uz/+jNj3bL1PYju90HDwAAVD1yIZSE94QAAADuyfB3dImJidHKlSuLLc/IyFBCQoLMZrOuu+46h8RWnSIjIzVjxowK7RsTE6NPPvnE7jGh+hz/6uerfuO2RlRDdRj7kE5tO6i9/1pRbP2ly6Z0fHmwYh7vq/0fVfFNJwAAAAAAdsN7QgAAAPdj+AJeafbu3Sur1aro6Gj5+/sXW79kyRJJ0r59+4r8HRERoU6dOlVztEDlHFv5v6uuP384SZ80feSq2+yZsUx7Ziyzc2QAAAAAgKrGe0IAAAD347QFvD179khXuXzm/fffX+Lfw4cP19y5c6shQlS3s5uW6MLutWr8+HTFT3tIOSf2yeztJ88a9dRkxAfyDWvu6BABAA5wdtMSnd+2SgWZZ5kbAABwAYfG366Cs6mS2SwPvyA1fvJd+UdeX6Z9L71vDB/xgSQp7bs5OjbjMTUbt0w1b7y7iiMHAAAAys5lC3hWbvDtds79tEy1Y4dJkure/pSCO/aRyWTSqVUzdWzmE2rxxjpHhwgAcIBzPy1Tre4PyOThxdwAAIALiBzzX3kG1pQknf3fMiW886havbOrTPte+b4x92SC0tZ8qIAWN1ZpvAAAAEBFuGwBD66nIOOc9o26Tpa8bHmHNJY1P1e5qfGq3Wuowkd8oIwDmxQxeq5Mnl6q0amvbb+A6Bt18otpDo0dAFA1rjY3RDz3b1kL8ovMD5cwNwAA4LwuFe8kqTDrvGQySeXMC6wWi47NfEKNn5qhxDkvOvDZAAAAACVz2gLe999/7+gQUM08A2uq9s2PyMMvSGEP/l3nt3+j1CUTFfHcv3VhxxoFtLypyIezl5xa+Y5qdhnokJgBAFXranODJKXv+aHE+YG5AQAA53Z0+jCl7/lBkhT16mqpnHlB6rJpCozppoDmHR36PAAAAIDSOG0BD+4p6+hO1es/6uL/436x3efg3JYvVOvGe4ptn/LZROWmHFH4P9ZWe6wAgMo7MLarcpIPl7iu1fQd8q7buNS5QaXMD8wNAAAYV1nmfklq+vx8SdLp7+cpcf5fbUW8suQF2cd+1bn/fa4WE9dXwzMCAAAAKoYCHpxK9tGdtjdgWXG/qGaXu2S1WnV+xzdqOHxKkW1Tl03Tuf8tVdTr38ns4++giAEAldFyyv+uuU1Jc4N+vx/uH+cH5gYAAIytLHP/lercMlzHPnhaBRdOyzO4TpnygjPrPlHuqQT9OiJKkpR/NlXHTjyl/LMpqttnRBU8KwAAAKD8zI4OACirvNNJkkzyrtNQkpSdsFt+4W2Udehn+TWKkYdfoG3bk1/+U2c3LFLU698WuT8CAMC1lDY3SCo2PzA3AADg/AoyzinvdLLt73M/fSHPoDryCKpd5rygbp8Rajc3RW0+TFCbDxMU0OJGhT8zm+IdAAAADIVf4MFpZMXvKHL5E4+Amjq1+n15Boeo5g1325bnpSUq8eMX5R0aqUOvxEqSTJ4+ipm2xSFxAwCqTmlzQ8Rz/9bZn5bZ5gfmBgAAXENh1nnFT7lflrxsmUxmeQbXVfNXVspkMpU5LwAAAACcAQU8OI2anfurZuf+tr9j3toqSdo7srXq/78fbMu9Qxqp45dWh8QIAKhepc0NknR+6wrb/MDcAACAa/CpF66YaT+XuK6secEftXhjXRVECgAAAFQOBTw4vdYz9zo6BACAATE/AACAS8gLAAAA4Gy4Bx4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCPfAQ7Xy9ZA29HV0FOXj62G/Y3n6+Whw3AL7HbAaePr5ODoEwKX4+3kq46dhjg6jXPz97JcuuPs8AACAuyMX4H0hAAAAyoYCHqqVySTZ8XNgp2MymeTl7+voMAA4kMlkUoC/l6PDcBh3nwcAAHB35AK8LwQAAEDZcAlNAAAAAAAAAAAAwEDc/HtvAABnFNq1te5c+lqp6y0FhZrf+MFqjQkAAKC6kAsBAAAAro8CHgDAacUv3aDE77cXW261WB0SDwAAQHUiFwIAAABcFwU8AIDTOr3nqOI/31Blx/f091VBVk6VHR8AAKAyyIUAAAAA10UBDwDg8sL73aCYx/qqdusImb09lZmUpqR1u7Tt9fmy5BfYLkO1cfRMefr7quWf7lBQeKj2zFimnW/919HhAwAAVAq5EAAAAOB8KOABAJyWp5+3fGoHFVtuyStQfka2JOn6lx5Wu9H36uzBE9o7e6WyT51VUHiowvvdoJ1TP1VefoFtv1ZP9pNPrSAdWvidsn87p8zk09X6fAAAAMqDXAgAAABwXRTwAABO6/qxD+n6sQ8VW37i21+0dtgkhbRvrnaj71XKxj36bshEFebm27b55Y0FxfYLaBiiZT1GK+f0hSqPHQAAoLLIhQAAAADXRQEPAOC0Dn6yRgkr/lds+aUPnSLv7SFJ+mXif4p8YFWauCU/8oEVAABwGuRCAAAAgOuigAcAcFoX4lOVsmFPqeuDm4bJarHo7L6EMh3vfFyKHaMDAACoWuRCAAAAgOsyOzoAAACqktVqldVqLdO2hdm5VR4PAABAdSIXAgAAAJwTBTwAgMu6EJ8ss4eHareKcHQoAAAA1Y5cCAAAAHBeFPAAAC4rfulGSVKHcY/I7MVVowEAgHshFwIAAACcFxk8AMBp1WnTVJH39ihx3fGvtipt5xHtmbFMbZ67RwPWTNHR5ZuVfeqcgprUU3i/G7Wq70vKu5BV7XEDAADYA7kQAAAA4Loo4AEAnFbkoB6KHFTyh1afdx2p9IRU/TJxoc7sS1DLP/VRm2cGSmaTspJPK+n77SrIzqv2mAEAAOyFXAgAAABwXSZrWe9mDQBAJeRn5WhhsyGODqPCBsctkJe/r6PDAAAATsyZ8yFyIQAAAKBsMjMzFRgYKEnKyMhQQEBAhY7DPfAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQDwdHQDci9Uq5RQ6Oory8fWQTCb7HMtqtaogO9c+B6smnn4+MtnrBaAN0AZAH6APuHUbcMbzf4m92oE7n/9LnLEd2HMcoA04XxsgF7Iv+oDz9QExDpIL/c5++ZDzvQ70AfqAeE/A5wLkg3bhjOf/Eke0Awp4qFY5hVKP1Y6Oonw29JX87NRTCrJzne6m9fa+WT1tgDbg7ugD9AF3bgPOeP4vsVc7cOfzf4kztgN7jgO0AedrA+RC9kUfcL4+IMZBcqHf2asdOOPrQB+gD4j3BHwuQD5oF854/i9xRDvgEpoAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAG4unoAICySN+zTodeiS2yzOwbIJ8G0arTa6jq9X9OJg+as6vi/MPd0QdAGwBtALQBuDv6AGgDcHf0AdAGAPdDj4ZTqXXzw6rRsa9ktSr/bKpOr5uvxI9fUE7ifoU/O9vR4aGKcf7h7ugDoA2ANgDaANwdfQC0Abg7+gBoA4D7oIAHp+If2UF1eg2x/V237zPa+0xLpX37bzUY8oa8atR1aHyoWpx/uDv6AGgDoA2ANgB3Rx8AbQDujj4A2gDgPijgOYm0tDRNnTpVq1evVnx8vAoKChQaGqqbb75Zzz//vDp06FBk+4SEBDVt2rRMx54wYYLGjx9fRZFXLQ/fAAW0uFHnNi9Rbmqc201Qj6Yssdux5obdZ7djVRfOv3uff9AHRD+gDcDt24C7jwGiDdAGQB+gD7h9G3B39AH6AGgDjANwZRTwnMDBgwfVq1cvpaamymw2q2nTpgoMDFRcXJwWLFigRYsWad68eRo8eLBtH19fX3Xr1q3UY6anp2v37t2SpJtuuqlankdVyU2NkyR5BtZ2dCjVKqBhiH4eP1f7Zq90dCgOxfl37/MP9+0Doh/YuHMbwEXu2gYYAy6jDdAG3B19gD7grm3A3dEHLqMPwF3bAOMAXB0FPCcwYsQIpaamqkWLFvriiy/UsmVLSVJmZqZeeOEFzZ49W08//bT69Omj2rUvDtKhoaHauHFjqcecMmWKdu/erUaNGunWW2+ttudSWZbcLBVcSJPValXB2VT99vW/lB2/Q/5RXeTbMNrR4VWrxrd10ok12xwdRrXi/F/mjucf9IE/csd+QBsAbeAydxwDRBsowl3bgLujD1zmrn2ANoBL6AP0AXdFG7jMXccBuA8KeAaXnp6udevWSZKmTp1qK95JUkBAgN577z0tXbpUaWlpWr9+ve6+++4yHXf+/PmSpKFDh8psNldR9PaXsmi8UhYVvdxnza6D1OTP7zksJkcJjgzVgbmpjg6jWnH+L3PV89/muXtUp02k6rSNVFB4fWWcOKUlXZ5xdFiGQR8oylX7wdW4RRswmdTqyX5qMfQ2BTaqq5zTF3R0xWbtnLJYBdm5jo7O4dyiDZSRO44Bog0U4YptgFzo2ugDl7liHygLl28D5EJlRh+4jD7gXly+DZSDu44DLo9xwMZpCnhpaWmaMmWKli5dqsTERNWtW1eDBg3SxIkTNWrUKH388ceaMWOGRo4c6ehQJUlWq1Umk6nSx8nNzZXVapUkRUZGFlvv6emp8PBwpaWlKT8/v0zH/OWXX7R3715J0vDhwysdY3UKueMp1brpflkL85V9bI9Sl05WXlqiTF6+tm3S927Qkdf7FNvXWpAnq6VQHZcVVnPU9ufp76v8jBxHh1HtOP8XufL57/jyYOWcSdeZPfHyDvZ3dDiGQx+4zJX7wdW4Qxvo8vqjavVEPx1bvUW//muFakY1VKvH+6rOdU31zQOvS7/nRe7KHdpAWbjrGCDagI2rtgFyoWujD1zkqn2gLFy9DZALlQ19gD7gzly9DZSVO48Dro5x4DKnKODt3LlTffr0UWpqqgICAtSqVSslJyfr3XffVVxcnM6cOSNJat++fZXF0KtXL/344486evSoIiIirrrt7t27NWzYMC1ZskTNmzev1OOGhISoYcOGSkpK0ubNm9W6desi68+cOaMDBw7IbDarQ4cOZTrmvHnzJEk33HCDWrRoUan4qptPWJSC2/eWJNXo2EeBMd11cFx3Hf/gaUWO+VSSFNS6h65fnFFkv7zTyTrwYifV7WeMAm9lNejZVkk/7nJ0GNWO83+RK5//JTc8o4zjpyRJA3/4p7wCfK+5jzuhD1zmyv3galy9DdSMbqSYx/ooYdVPWvfENNvy9OOndOMbj6vp3d10dFnplwh3B67eBsrKXccA0QZsXLUNkAtdG33gIlftA2Xhym2AXKjs6AP0AXfmym2gPNx5HHBljANFGf7aiWlpaRowYIBSU1P14osvKiUlRdu3b1dqaqomT56sVatWaevWrTKZTGrbtq2jw5UkzZkzR7t27VJsbKzi4+MrfbyJEyfKZDJpzJgxmjNnjk6ePKnMzExt2rRJ/fv3t90Lr1mzZtc8Vn5+vhYtWiRJevTRRysdm6MFxtyk2r2G6uzGxcrYv7nEbSz5uYp/c5ACW3VX2P0vV3uMVaFe55b6bevBIss6jHtEj6YsUfOHbilxnzs/f01DExapZovG1RRl1eP8X+Yq5//SB1YoG3ftA3LxflAertYGmt7TXSazWfs+XFVk+eGF3yk/K0fN7r3ZYbEZlau1gbJiDLiMNnCZK7QBcqHyow9c5gp9oCJcqQ2QC5UdfeAy+gBcqQ2UB+OAa2IcKMrwBbxRo0YpMTFRI0eO1LRp0xQUFGRbN3bsWLVr104FBQWKiIhQcHCwQ2O95K233tLQoUOVmJio2NhYJSQkVOp4w4YN07JlyxQVFaXHHntMoaGhCgwMVPfu3ZWcnKz58+dr6tSpZTrWqlWrlJaWJh8fHz344IOVissowh78u2T2UPJ/Xi1x/fH3n5YlP0cRo+dWe2xVwmSSTJLVYimyeOe0/+rs/mPqMmG4/MNqF1nX6qn+Cr2ptXZOW6xzB09Uc8BVi/N/kbuef7hhHxD94I9cqQ2EtG8uS2Gh0nYcLrK8MDdfZ35NUEj7a39ZyR25UhsoE8aAYmgDF7lzG3B39IGL3LkPuEobIBcqI/pAMfQBuEobKDPGAZfFOFCUoQt4+/fv1+LFixUSEqJJkyaVuE3Hjh0lSe3atSuy/OjRo7rrrrsUFBSkWrVqadiwYTp9+nSlY0pMTFRCQsJV/x0/flwTJkzQLbfcouPHjys2NlbHjx+v8GNarVbFxcXpt99+k9lsVkREhNq2bSt/f38dO3ZMs2bN0v79+8t0rPnz50uS7rrrLtWqVavCMRmJb1hz1e7xkNJ3r1X63g1F1p1a8a7Ob1upZuO+kNnHNe4hUff65krbcaTYckt+gTaMnilPfx91++flG90HN2ugDi89rN9+OaRf319ezdFWPc7/Re56/uF+fUD0g2JcqQ3416+l3DPpsuQVFFuXlXpGvnVqyOzlFFeAr1au1AbKgjGgONrARe7cBtwdfeAid+4DrtIGyIXKhj5QHH0ArtIGyopxwHUxDhRl6ALeokWLZLFYNHjwYAUGBpa4jZ+fn/SHAl56erpiY2OVmJioRYsWafbs2dqwYYP69+8vyx+q8uXVo0cPNW3a9Jr/mjVrpu+//16SlJCQoCFDhlT4MUeMGKEXX3xR9erV0/79+3X06FHt2rVLaWlpGjNmjDZt2qSuXbvqxImrf3Pg9OnTWrXq4k9PXeHymVcKvf9vktlc5Fsm6bt/UOL8vypy7GfyqX/1+xYaVf0bY2TyKNpNG8Zer6Qfdpa4/Zk9R7V7xjI17NVe0UN6y2Q2q8e7z0mSNoyeWexbKa6C83+Ru55/uG4fEP2gzFylDXj4+agwL7/EdYW5F5d7+nlXc1TOwVXawB8xBpQdbeAid24D7o4+cJE79wFXaAPkQsXRB8qOPgBXaAMlYRxwL4wDRRm6VHmpABYbG1vqNomJidIfCnizZ89WUlKS1q9fryZNmkiSGjVqpJtuuknLly/X3XffXeGY2rRpI2/vsjWQ06dP2y6fGRMTU6HH27Vrl2bPni0vLy999tlnCg8Pt63z8/PTlClTtH37dq1du1YTJ07UBx98UOqxFi1apLy8PIWGhuqOO+6oUDxX6tSpk1JTU8u1j8nbT/XfPlyGLYsKatNLHb+0lrrer3GMOi4rtP2dezJB8VMfUKNHpyqoTa9yP96VoqOjZM3LrtQxLvGymjVeXcq0bcRdN6nbWyO0dvibSt289/Ixgv2Vn55V6n67pi9Rk9s7qdOrw1S7dYTqdojSzxPm6kJccoVijo6KVr7JfhNbRdqAI8+/HNQGjHL+Zcc2UJ72b0T2eh3oA4yD7twGrnX+C7Nz5RVQo8R1Hj5ekqSC7LxKx1ERjhwD5EK5kNx8LhRtQHLCNmDP8+/M+RDjoPv2ATEOkgv9rrrfG9IHiqIPuE4fcOc2ID4XcHvOPA6Upx1c+UOy7t27a8eOHRV6TEMX8I4dOyZJRYpWVyooKNCmTZukPxTwVq5cqe7du9uKd5LUtWtXRUZGasWKFZUq4C1fvlwREdf+tkJiYqJ69uwpSXrwwQf1/vvvV+jxNm3aJKvVqqioqFJfh9tvv11r167V1q1br3qsefPmSZIGDx4sDw+PCsVzpdTUVCUlJZVrH7OPv+pX+pGvzpKbpbhJd6tGl7tUr9/ISh8vOTlZltzSJ4Ty8DZ5qKwvQMLyzQpuGqrGd3S2TVABDUOUmfjbVfezFhRqw+iZ6v/Vm2r56J06uWW/9s1eddV9riY5JVl51sIybFk2Vd0G7H3+5aA2YJTzLzu2gfK0fyOy1+tAH2AcdOc2cK3zn3XyrGpEN5LZ27PY5TL8Q2sr5/R5WfKLX0ajOjjLGCCD50Jy87lQtAHJCduAPc+/M+dDjIPu2wfEOEgu9Lvqfm9IH6g4+kDVYC7kcwFUnjOPAxVtBydPnqzwYxq6gJeZmSlJys4uubq/ePFipaWlKSgoSE2bNrUt37dvn+6///5i27du3Vr79u2rwogvSkpKUmxsrOLj43XfffdpwYIFFS6Ypaenl3nbnJycUtft27dP27Ztk+x4+czQ0NBy72Py9rPLY1/N2c2fK/voLuUkHdLZjYuLrW89c5+86zYpcd+SNGjQwK7fMFE5vqxx7Kufdevcv2rr+Is3mG18WyedWLPtmvvlX8iSJa9AHt5eSly7XbKW/u2ca2kQ1sDuvzypSvY+/3JgGzDC+Zcd20B527/R2Ot1oA8wDrpzG7jW+U/beUQNe7VXyPVROrXl8v19PXy8VPu6CJ38qWz3/K0KzjIGyOC5kNx8LhRtQHLCNmDP8+/M+RDjoPv2ATEOkgv9zhHvDekDFUMfqBrMhXwugMpz5nGgPO3AYrEoJSVFklS/fsVL9oYu4IWGhurs2bPavn27unbtWmRdSkqKxowZI0lq27atTCaTbd3Zs2dVs2bNYserXbu2Dh48WOVxv/baazpy5IjuueceLVq0SJ6eFX+Zo6OjJUmHDx/WsWPHSvwV3po1ayRJLVq0KPU48+fPlyR16NBB1113XYXjudKlgmB5ZBdIPVbb5eFLVSd2qOrEDrXb8Q4dOiw/O/WU/KwcLWxW9vshnj+UKFmlmtGNdO5QooKahip97rUr9t3eflZmL0+dO3RCbf9yrxKWb1b6sYpV+g8dPiQvf98K7VuSqm4D9j7/cmAbMML5lx3bQHnbv9HY63WgDzAOunMbuNb5P/rlZrUdNUitnuxXJFGPGtxbXv6+il+6vvJBVJCzjAEyeC4kN58LRRuQnLAN2PP8O3M+xDhot8M5XR8Q4yC50O8c8d6QPlAx9IGqwVxon2PxuYB7c+ZxoDztIDMzU4GBgZKkjRs3VvgxzWXYxmF69+4tSZo8ebIOHTpkW75161bFxsYqLS1NktS+ffsqj6Vnz5669957FRAQcM1t33nnHb322mtavHhxpYp3+v3ymPXq1VN+fr7uv//+Iq9Ddna2xo4dq7Vr10qShg0bVuIxLBaLFixYIEkaPnx4peJB9Tvx7TY1vqOzPP19lZ9x7W+6xDzeV2HdrtPOf36mdU++JbOHh7pNf6ZaYoX9udv5j7zvZrX9y71q+5d75VsnWF5B/ra/I++72dHhwUHcrR+4s3MHjuvAnK8V0e9GxX40RlGP3KpO44epy4ThSt28V/FLK570wnkxBsCd2gC5EEriTn3A3ZELlYw+4D7oAygN44D7YBwoytC/wBs7dqz+85//6MSJE2rdurVatmypnJwcHTlyRH369FFERIS++eabIve/k6RatWrp3LlzxY535swZ1a5du0KxvPbaa2Xe1s/PT6+++mqFHuePAgICtHDhQt19993aunWrYmJiFB4erqCgIB05ckRZWRevPfzss89q4MCBJR7ju+++U1JSkry8vPTII4/YJS5UnxNrtqnDuEd0Pi5Zyet3X3XboKah6vDyI/ptx2H9OvMLWS0W7Xzrv+r48mDFPN5X+z+q4q/3wO7c7fxHP3yrQm9qXWRZh78+LEkXJ+kljv22HRzD3fqBu/v51bnKOPGboof0VqNbOyjnzAXt//gr7ZiyuNKXPoJzYgyAO7UBciGUxJ36AMiFSkIfcC/0AZSEccC9MA5cZugCXqNGjbRhwwaNGTNGP/74oxISEtSqVSvNmjVLTz75pJo1ayZJxQp4MTExJd7rbt++fbr5Zuf71mLv3r21e/duTZ8+Xd99952OHTumxMREhYSE6LbbbtOTTz6pfv36lbr/vHnzJEn9+vVTSEhINUYOezi5Zb+CI8MU3qeLNo5+r/QNTSZ1f3ukzGazNo6eKavl4vV4f33vS4X3vUEdXn5Eid/9UqlLRqD6udv5//re8Y4OAQbkbv3A3VktFu2dtUJ7Z61wdCgwCMYAuFMbIBdCSdypD4BcqCT0AfdCH0BJGAfcC+PAZYa+hKZ+L8atXLlS6enpSk9P15YtW/TUU08pMzNTCQkJMpvNxe7p1r9/f23cuFGJiYm2ZVu2bFFcXJwGDBjggGdReZGRkZoxY4b279+vrKws5eXlKTk5WV988cVVi3eStHDhQlmtVi1btqza4oX9WAstSlq36+L/LaXfJLP10wNUv0tL7Zi6WOcPJ13e32LRxtEz+am4k+L8A/QDwN0xBoA2AHdHH4C7ow8AYByAuzJ8Aa80e/fuldVqVVRUlPz9/Yuse+qppxQWFqaBAwdq5cqVWrJkiR5++GF16dKl1MtMAkZ2/KufdfzrraWurxHVUB3GPqRT2w5q77+KfzPh3KFE7Xzrvwrt2loxj/et4mhhb5x/gH4AuDvGANAG4O7oA3B39AEAjANwR4a+hObV7NmzRyrh8pmSFBwcrO+//16jR4/WQw89JE9PT/Xv31/Tp0+X2ey0NUtUwNlNS3R+2yoVZJ5Vzol9Mnv7ybNGPTUZ8YF8w5o7OrwyO7byf1ddf/5wkj5pevX7G+6ZsUx7ZrjurzDPblqiC7vXKnzEB7Zlad/N0bEZj6nZuGWqeePdDo2vMjj/uNKh8ber4GyqZDbLwy9IjZ98V/6R15dp3z/2E2fqI/QDoOJcIR9iDCgb8iHagLtwx3yIPgB3Rx8AyubSPNf48emKn/aQ0+b/JWEcgDtyyQKeJDVr1kwrV66s5qhgNOd+WqZa3R+QycNLwR37yGQy6dSqmTo28wm1eGOdo8ODHZ37aZlqxw6z/Z17MkFpaz5UQIsbHRoXYG+RY/4rz8CakqSz/1umhHceVat3dpVp3yv7CX0EcB/kQ+6DfAjugnwIAICSXTnP1b39KfJ/wMm5bAEPrq8g45z2jbpOlrxseYc0ljU/V7mp8arda6ginvu3rAX5yjiwSRGj58rk6WXbLyD6Rp38YppDY0f5Xe18h4/4wHau9ft1rY/NfEKNn5qhxDkvOjp0wK4ufVglSYVZ5yWTSSrnmEgfcW3XagtwLeRD7oV8CLiIfAhXQy4Ed0cfcG1lzQdNnl6q0enyZSLJ/wHn5LQFvO+//97RIcDBPANrqvbNj8jDL0hhD/5d57d/o9QlE23JSPqeHxTQ8qYiH1ZJ0qmV76hmF+6F6Gyudr4v7FhT5Fyf/PKfCozppoDmHR0dNlAljk4fpvQ9P0iSol5dLZVzTExdNo0+4sKu1RbgWsiH3Av5EHAZ+RBKQy4Ed0cfcG3lyQevRP4POCenLeDB9R0Y21U5yYdLXNdq+g55122srKM7Va//KElSVtwvRe57cG7LF6p14z1F9kv5bKJyU44o/B9rqzh6VIXSzveV5zr72K8697/P1WLieofGClREWcY9SWr6/HxJ0unv5ylx/l9tH1qVZUykjzi/ys6PcC7kQ/gj8iG4OvIhXAu5ENwdfQBlyQevRP4POC8KeDCsllOufmNSSco+utM2SWXF/aKaXe6SJFmtVp3f8Y0aDp9i2zZ12TSd+99SRb3+ncw+/lUYOapKSef7j+c6Y98G5Z5K0K8joiRJ+WdTdezEU8o/m6K6fUY4NH7gWsoy7l2pzi3DdeyDp1Vw4bQ8g+uUaUw8s+4T+oiTq8z8COdDPoQ/Ih+CqyMfwrWQC8Hd0QdQlnzwEvJ/wLmZHR0AUFF5p5MkmeRdp6EkKTtht/zC20iSsg79LL9GMfLwC5R+v4TQ2Q2LFPX6t0XulwDnUdr5/uO5rttnhNrNTVGbDxPU5sMEBbS4UeHPzOaNOFxCQcY55Z1Otv197qcv5BlURx5Btcs8JtJHXN/V2gJcD/mQeyEfAsiHcG3kQnB39AHXVtZ8UOT/gEvgF3hwWlnxO4pcAsAjoKZOrX5fEc/9W2d/WqaaN9wtScpLS1Tixy/KOzRSh16JlSSZPH0UM22Lw2JH+ZV2vj2DQ2znGnB1hVnnFT/lflnysmUymeUZXFfNX1kpk8lU5jERru9qbQGuh3zIvZAPAeRDuDZyIbg7+oBrK2s+SP4PuAYKeHBaNTv3V83O/W1/x7y11fb/81tXqP7/u3hDc++QRur4pdUhMcJ+Sjvfe0e2tp3rkrR4Y121xAdUB5964YqZ9nOJ68o6Jv4RfcT1XK0twPWQD7kX8iGAfAjXRi4Ed0cfcG1lzQfJ/wHXQAEPLqn1zL2ODgHVhHMNXBv9BHBP9H33wbkGro1+AgBwZcxzgGviHngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAMxWa1Wq6ODgPuwWqWcQkdHUT6+HpLJZJ9jWa1WFWTn2udg1cTTz0cme70AtAG3bgPO+NyvZL/XgT7gbO2AcdB+bSA/K0cLmw2xR0jVbnDcAnn5+1b6OO58/i9x93GANuB8bcC+59+5nvuVyIXsdzxnbAeMg+RCsms+RB+gDzgn3hPY51juPga4O2ceB8ozBmRmZiowMFCSlJGRoYCAgAo9pmeF9gIqyGSS/Ny41ZlMJrtM9M6MNuC+bcCdn/uV6AO0A3dvA+6O8884QBtw7zbgzs/9EvoA7YA2APoAfcDduXsbcPcxACgPLqEJAAAAAAAAAAAAGIgb1/oBAADgrEK7ttadS18rdb2loFDzGz9YrTEBAABUF3IhuDv6AAB3GAco4AEAAMBpxS/doMTvtxdbbrVwm2cAAOD6yIXg7ugDAFx5HKCABwAAAKd1es9RxX++ocqO7+nvq4KsnCo7PgAAQGWQC8Hd0QcAuPI4QAEPAAAALi+83w2KeayvareOkNnbU5lJaUpat0vbXp8vS36B7dIbG0fPlKe/r1r+6Q4FhYdqz4xl2vnWfx0dPgAAQKWQC8Hd0QcAOOM4QAEPAAAATsvTz1s+tYOKLbfkFSg/I1uSdP1LD6vd6Ht19uAJ7Z29UtmnziooPFTh/W7QzqmfKi+/wLZfqyf7yadWkA4t/E7Zv51TZvLpan0+AAAA5UEuBHdHHwDgyuMABTwAAAA4revHPqTrxz5UbPmJb3/R2mGTFNK+udqNvlcpG/fouyETVZibb9vmlzcWFNsvoGGIlvUYrZzTF6o8dgAAgMoiF4K7ow8AcOVxgAIeAAAAnNbBT9YoYcX/ii2/lGhH3ttDkvTLxP8USdJLE7fkR0Mk6QAAAGVBLgR3Rx8A4MrjAAU8AAAAOK0L8alK2bCn1PXBTcNktVh0dl9CmY53Pi7FjtEBAABULXIhuDv6AABXHgfMjg4AAAAAqEpWq1VWq7VM2xZm51Z5PAAAANWJXAjujj4AwFnHAQp4AAAAcFkX4pNl9vBQ7VYRjg4FAACg2pELwd3RBwA48zhAAQ8AAAAuK37pRklSh3GPyOzF1eMBAIB7IReCu6MPAHDmccC5ogUAAACuUKdNU9sNqf/o+FdblbbziPbMWKY2z92jAWum6Ojyzco+dU5BTeopvN+NWtX3JeVdyKr2uAEAAOyBXAjujj4AwJXHAQp4AAAAcFqRg3ooclDJifrnXUcqPSFVv0xcqDP7EtTyT33U5pmBktmkrOTTSvp+uwqy86o9ZgAAAHshF4K7ow8AcOVxwGQt6537AAAAgErIz8rRwmZDHB1GhQyOWyAvf19HhwEAAJyYM+dCIh+CHdAHADjzOFCeMSAzM1OBgYGSpIyMDAUEBFToMbkHHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA+EeeKhWVquUU+joKMrH10MymexzLKvVqoLsXPscrJp4+vnIZK8XAAAAN0cuAAAA3B35ENwdn48yBrh7G0DZUcBDtcoplHqsdnQU5bOhr+Rnp55SkJ3rdNf45freAADYD7kAAABwd+RDcHd8PsoY4O5tAGXHJTQBAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMxNPRAQBlkb5nnQ69Eltkmdk3QD4NolWn11DV6/+cTB40ZwAAAAAAAACuh89H3Rvn3z1xRuFUat38sGp07CtZrco/m6rT6+Yr8eMXlJO4X+HPznZ0eAAAAAAAAABQZfh81L1x/t0LBTw4Ff/IDqrTa4jt77p9n9HeZ1oq7dt/q8GQN+RVo65D4wMAAAAAAACAqsLno+6N8+9eKODBqXn4BiigxY06t3mJclPj3G6AejRlid2ONTfsPrsdCwAAVA9yAQAA4M7IhQA+H3X3ccDdz7+ro4DnJNLS0jR16lStXr1a8fHxKigoUGhoqG6++WY9//zz6tChg133cya5qXGSJM/A2o4OpVoFNAzRz+Pnat/slY4OBQAAOAC5AAAAcGfkQsBlfD7q3uOAu55/d0ABzwkcPHhQvXr1Umpqqsxms5o2barAwEDFxcVpwYIFWrRokebNm6fBgwfbZT8js+RmqeBCmqxWqwrOpuq3r/+l7Pgd8o/qIt+G0Y4Or1o1vq2TTqzZ5ugwAACAg5ALAAAAd0YuBHfF56OXueM4wPl3LxTwnMCIESOUmpqqFi1a6IsvvlDLli0lSZmZmXrhhRc0e/ZsPf300+rTp49q165d6f2MLGXReKUsGl9kWc2ug9Tkz+85LCZHCY4M1YG5qY4OAwAAOAi5AAAAcGfkQnBXfD56mTuOA5x/90IBz+DS09O1bt06SdLUqVNtRThJCggI0HvvvaelS5cqLS1N69ev1913312p/Ywu5I6nVOum+2UtzFf2sT1KXTpZeWmJMnn52rZJ37tBR17vU2xfa0GerJZCdVxWWM1R25+nv6/yM3IcHQYAAHbV5rl7VKdNpOq0jVRQeH1lnDilJV2ecXRYhkQuAACAayIfKhtyIddFH7g2Ph+9yF3HAVc//4wBRTlNAS8tLU1TpkzR0qVLlZiYqLp162rQoEGaOHGiRo0apY8//lgzZszQyJEjHR2qJMlqtcpkMlX6OLm5ubJarZKkyMjIYus9PT0VHh6utLQ05efnV3o/o/MJi1Jw+96SpBod+ygwprsOjuuu4x88rcgxn0qSglr30PWLM4rsl3c6WQde7KS6/YzRPiqrQc+2Svpxl6PDAADArjq+PFg5Z9J1Zk+8vIP9HR2OoZELAADgmsiHyoZcyHXRB66Nz0cvctdxwNXPP2NAUWZHB1AWO3fuVJs2bTR16lSlpqaqVatWys/P17vvvqsHH3xQ+/fvlyS1b9++ymLo1auXTCaTEhISrrnt7t27df311+vIkSOVftyQkBA1bNhQkrR58+Zi68+cOaMDBw7IbDarQ4cOld7P2QTG3KTavYbq7MbFythf/HlKkiU/V/FvDlJgq+4Ku//lao+xKtTr3FK/bT1YZFmHcY/o0ZQlav7QLSXuc+fnr2lowiLVbNG4mqIEAKB8ltzwjD5t/Seteegfyjp51tHhGBq5AAAArol8qGzIhVwXfaD8+Hz0MnccB1zt/DMGFGX4Al5aWpoGDBig1NRUvfjii0pJSdH27duVmpqqyZMna9WqVdq6datMJpPatm3r6HAlSXPmzNGuXbsUGxur+Pj4Sh9v4sSJMplMGjNmjObMmaOTJ08qMzNTmzZtUv/+/W33tGvWrJld9nM2YQ/+XTJ7KPk/r5a4/vj7T8uSn6OI0XOrPbYqYTJJJslqsRRZvHPaf3V2/zF1mTBc/mFF72nY6qn+Cr2ptXZOW6xzB09Uc8AAAJRNxvFTjg7BOZALAADgssiHyoBcyKXRByqGz0cvctdxwJXOP2NAUYYv4I0aNUqJiYkaOXKkpk2bpqCgINu6sWPHql27diooKFBERISCg4MdGuslb731loYOHarExETFxsaW6Vd7VzNs2DAtW7ZMUVFReuyxxxQaGqrAwEB1795dycnJmj9/vqZOnWq3/ZyNb1hz1e7xkNJ3r1X63g1F1p1a8a7Ob1upZuO+kNnHNX5yW/f65krbUfzXnZb8Am0YPVOe/j7q9s/L1wUObtZAHV56WL/9cki/vr+8mqMFAAD2Ri4AAADcGbkQUByfj17kruOAu51/d2LoAt7+/fu1ePFihYSEaNKkSSVu07FjR0lSu3btbMuWLFmie++9V+Hh4fL391fLli31t7/9TRkZGSUeozwSExOVkJBw1X/Hjx/XhAkTdMstt+j48eOKjY3V8ePHK/yYVqtVcXFx+u2332Q2mxUREaG2bdvK399fx44d06xZs2yXEbXHfs4o9P6/SWZzkW8ZpO/+QYnz/6rIsZ/Jp36EQ+OrqPo3xsjkUbSbNoy9Xkk/7Cxx+zN7jmr3jGVq2Ku9oof0lslsVo93n5MkbRg9s9i3UgAAgLGRCwAAAHdGLgSUHZ+PXuSu44Crnn935+noAK5m0aJFslgsGjx4sAIDA0vcxs/PT/pDAW/atGlq0qSJJk6cqEaNGmnnzp167bXX9OOPP2r9+vUymytet+zRo0e590lISNCQIUO0fv36Cj3miBEjNGvWLHXu3Flr1qxRdHS0JCk7O1vjx4/X1KlT1bVrV+3Zs0eNGzeu9H5l1alTJ6WmppZrH5O3n+q/fbjcjxXUppc6fmktdb1f4xh1XFZo+zv3ZILipz6gRo9OVVCbXuV+vCtFR0fJmpddqWNc4mU1a7y6lGnbiLtuUre3Rmjt8DeVunnv5WME+ys/PavU/XZNX6Imt3dSp1eHqXbrCNXtEKWfJ8zVhbjkCsUcHRWtfJNrTmwAgOpVnnnQaOw1H5ILAADgvpw5F5ID8iGj5EIiH7Ib+sBFfD7Ke6KKtAFHnn/ZsQ048zhQnnZguaJQ3L17d+3YsaNCj2noAt73338vSYqNjS11m8TEROkPBbwVK1aobt26tr979uypunXravDgwdq4caNuvvnmCsfUpk0beXt7l2nb06dP2y6fGRMTU6HH27Vrl2bPni0vLy999tlnCg8Pt63z8/PTlClTtH37dq1du1YTJ07UBx98UKn9yiM1NVVJSUnl2sfs46/65X6k8rHkZilu0t2q0eUu1es3stLHS05OliW39AmhPLxNHirrC5CwfLOCm4aq8R2dbRNUQMMQZSb+dtX9rAWF2jB6pvp/9aZaPnqnTm7Zr32zV1U45uSUZOVZC8uwJQAAV1eeedBo7DUfkgsAAOC+nDkXkgPyIaPkQiIfshv6wEV8Psp7oqpuA/Y+/7JjG3DmcaCi7eDkyZMVfkxDF/COHTsmSUWKT1cqKCjQpk2bpD8U8K4s3l3SqVMnSSp3wemPli9froiIa//cNDExUT179pQkPfjgg3r//fcr9HibNm2S1WpVVFRUqa/D7bffrrVr12rr1q2V3q88QkNDy72PyduvQo9VHmc3f67so7uUk3RIZzcuLra+9cx98q7bpMzHa9CggV2/YaJyfFnj2Fc/69a5f9XW8RdvMNr4tk46sWbbNffLv5AlS16BPLy9lLh2u2Qt/dsZ19IgrAHfMgMA2EV550Ejsdd8SC4AAID7cuZcSA7Kh4yQC4l8yG7oAxfx+Sjviaq6Ddj7/MuObcCZx4HytAOLxaKUlBRJUv36Fa9YGrqAl5mZKf1+yceSLF68WGlpaQoKClLTpk2veqwffvhBqsQv4cojKSlJsbGxio+P13333acFCxbIw8OjQsdKT08v87Y5OTmV3q88tm279kD5R9kFUo/VFXq4MqsTO1R1Yofa7XiHDh2Wn516Sn5WjhY2G1Lm7c8fSpSsUs3oRjp3KFFBTUOVPvfaFftubz8rs5enzh06obZ/uVcJyzcr/VjFKv2HDh+Sl79vhfYFAOBK5Z0HjcRe8yG5AAAA7suZcyE5KB8yQi4k8iG7oQ9cxOejvCeq6jZg7/MvO7YBZx4HytMOMjMzbbeF27hxY4Ufs+I3g6sGl37htX379mLrUlJSNGbMGElS27ZtZTKZSj1OUlKS/v73v+vOO+9U+/btqzDii1577TUdOXJE99xzjxYtWiRPz4q37Ev3rTt8+LDtF4l/tGbNGklSixYtKr0fjOfEt9vU+I7O8vT3VX7Gtb/lEPN4X4V1u047//mZ1j35lsweHuo2/ZlqiRUAANgfuQAAAHBn5EIAGAfgrgz9C7zevXtr//79mjx5sm677TZbUWrr1q0aOnSo0tLSJOmqRbmMjAwNHDhQ3t7e+vjjjyscS8+ePRUSEqKAgIBrbvvOO++oUaNGGjduXKWKd/r9Mpf16tXTqVOndP/992vBggW21yE7O1vjx4/X2rVrJUnDhg2r9H4wnhNrtqnDuEd0Pi5Zyet3X3XboKah6vDyI/ptx2H9OvMLWS0W7Xzrv+r48mDFPN5X+z+q4q/3AABQCZH33azARhcvhe5bJ1hmL0+1/cu9kqSMxN8Uv2S9gyN0DHIBAADcB/lQceRC7oU+gJIwDrgPxoCiDF3AGzt2rP7zn//oxIkTat26tVq2bKmcnBwdOXJEffr0UUREhL755psi97+7UnZ2tgYMGKCjR49qw4YNCgsLq3Asr732Wpm39fPz06uvvlrhx7pSQECAFi5cqLvvvltbt25VTEyMwsPDFRQUpCNHjigr6+KNI5999lkNHDiw0vvBeE5u2a/gyDCF9+mijaPfK31Dk0nd3x4ps9msjaNnymq5eD3eX9/7UuF9b1CHlx9R4ne/VOqSEQAAVKXoh29V6E2tiyzr8NeHJUmpm/e6XaJ+CbkAAADug3yoOHIh90IfQEkYB9wHY0BRhi7gNWrUSBs2bNCYMWP0448/KiEhQa1atdKsWbP05JNPqlmzZpJUYgEvPz9f9913n7Zt26a1a9eqVatWDngG9tG7d2/t3r1b06dP13fffadjx44pMTFRISEhuu222/Tkk0+qX79+dtsPxmIttChp3a6L/7eUfpPM1k8PUP0uLbXtH5/o/OGky/tbLNo4eqYGrJmqbtOf0deDxldL3AAAlNfX9zJHlYRcAAAA90E+VBy5kHuhD6AkjAPugzGgKEMX8CQpJiZGK1euLLY8IyNDCQkJMpvNuu6664qss1gsGjx4sNauXavVq1erS5cu1Rhx1YiMjNSMGTOqbT8Yy/Gvfpas1lLX14hqqA5jH9KpbQe1918riq0/dyiRn4oDAODEyAUAAIA7IxcCwDgAd2T4Al5p9u7dK6vVqujoaPn7+xdZ9+yzz+qzzz7TSy+9JH9/f/3000+2dc2aNVPdunUdEDFQccdW/u+q688fTtInTR+56jZ7ZizTnhnL7BwZAACoDuQCAADAnZELAWAcgDty2gLenj17pFIun/nVV19Jkt588029+eabRdbNmTNHjz76aDVFCQAAAAAAAAAAUPXOblqiC7vXqvHj0xU/7SHlnNgns7efPGvUU5MRH8g3rLmjQ0Q5uGQBLyEhwQERwQgKMs5p36jrZMnLlndIY1nzc5WbGq/avYYq4rl/Ozo8AAAAAAAAAKgyfD7q3s79tEy1Y4dJkure/pSCO/aRyWTSqVUzdWzmE2rxxjpHh4hycMkCHtyXZ2BN1b75EXn4BSnswb/r/PZvlLpkIpMTAAAAAAAAAJfH56Ou7WoF2vARHyjjwCZFjJ4rk6eXanTqa9svIPpGnfximkNjR/k5bQHv+++/d3QIcIADY7sqJ/lwietaTd8h77qNlXV0p+r1HyVJyor7Rf6R11dzlAAAAAAAAABgf3w+6t6uVqC9sGONAlreJJOnV7H9Tq18RzW7DHRIzKg4py3gwT21nHL1m5VKUvbRnbZJKSvuF9Xsclc1RAYAAAAAAAAAVYvPR1Fagfbcli9U68Z7im2f8tlE5aYcUfg/1lZ7rKgcs6MDAOwp73SSJJO86zSUJGUn7JZfeBtHhwUAAAAAAAAAVY7PR13fHwu0/pHXy2q16vyObxTcoU+RbVOXTdO5/y1V81e/ktnH30ERo6Io4MGlZMXvKPKTcI+Amjq1+n2HxgQAAAAAAAAA1YHPR11baQXarEM/y69RjDz8Am3bnvzynzq7YZGiXv9WnoE1HRg1KopLaMKl1OzcXzU797f9HfPWVofGAwAAAAAAAADVhc9HXVtpBVrP4BDVvOFu2/K8tEQlfvyivEMjdeiVWEmSydNHMdO2OCRuVAwFPAAAAAAAAAAAAIMrrUC7d2Rr1f9/P9iWe4c0UscvrQ6JEfZDAQ8AAAAAAAAAAMBJtZ6519EhoApwDzwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEJPVauVOhqg2VquUU+joKMrH10MymexzLKvVqoLsXPscrJp4+vnIZK8XAADg1pxxHrzEXvOhM74G5AIAANiHM+YBVyIfIh+qLGc891eyXx/g81Fnawf2HgPcuQ044/m/pDztIDMzU4GBgZKkjIwMBQQEVOgxKeABAAAAAAAAAAAAdmCvAh6X0AQAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ9V6pNPPlHHjh1Vq1Yt+fn5KSYmRv/85z9ltVodHRoAAAAAAAAAAIAheTo6ALi2evXq6e9//7tatGghHx8fbdiwQc8884w8PDw0evRoR4cHAAAAAAAAAABgOCYrP4VCNbvnnnskScuWLXN0KAAAAAAAAAAAAHaTmZmpwMBASVJGRoYCAgIqdBwuoYlqY7Va9fPPP2vTpk2KjY11dDgAAAAAAAAAAACGxCU0UeXOnz+vhg0bKi8vTxaLRePHj9eoUaMcHRYAAAAAAAAAAIAhUcBDlQsKCtLOnTuVlZWlzZs3a9y4cWrQoIEef/xxR4cGAAAAAAAAAABgONwDD9Vu0qRJeuedd5SamuroUAAAAAAAAAAAAOyGe+DBaVksFuXk5Dg6DAAAAAAAAAAAAEPiEpqoUuPHj1ePHj0UGRmp/Px8rV+/XpMnT9af/vQnR4cGAAAAAAAAAABgSBTwUKUuXLigp59+WklJSfL19VVkZKQmTZqkp59+2tGhAQAAAAAAAAAAGBL3wIMhWK1WFRQUysuLmjIAAAAAAAAAAHBO3AMPLmXfkWOaPGuRftqxz9GhAAAAAAAAAAAAOBQFPDic1WrVdxt/UUZmts5dyHB0OAAAAAAAAAAAAA5FAe8aTCaTTCaTJGnFihXq0aOHgoODFRISovvuu09xcXG2bVeuXKmePXuqZs2aCg4O1sCBA3X48OFSj52bm6t33nlHN910k2rWrClfX1+1aNFCY8aMUVpaWon7bNmyRX/961/VuXNnhYaGysfHRw0bNtQDDzygrVu3lvpYq1evVt++fVWvXj15eXmpTp06iomJ0WOPPaZNmzZV6jWqrH1Hjinl1Gl5e3upR+e2Do0FAAAAAAAAAADA0bgH3jVcKt7NnDlTI0eOVIMGDVS/fn0dOHBA2dnZatiwoXbs2KGFCxfq+eefV1hYmEJDQ23rQ0NDtXv3btWtW7fIcU+ePKk+ffpox44dMpvNaty4sYKDg3Xo0CHl5uaqSZMm+uGHHxQZGVlkv+bNmysuLk61a9dWWFiYvL29dfz4cZ0+fVqenp769NNPde+99xbZ5/3339ezzz4rSapTp47Cw8OVnZ2tEydOKCMjQ3/+85/1r3/9q8pfy5JYrVa9O3epUk6dVq8b2+vOnl0cEgcAAAAAAAAAAEBlcQ+8ajZ27FjNmzdPSUlJ2r59uxITE9W5c2clJSXpscce08svv6x58+YpOTlZ27dv14kTJ9SxY0elpqbqrbfeKnIsq9WqBx98UDt27FC/fv0UFxenhIQE7d69W2lpaXrsscd0/PhxDRkypFgcr776qg4fPqzTp0/r119/1fbt23Xq1CktXbpUvr6+euKJJ5SRcfkylAUFBXrllVek3wt5J0+e1C+//KJ9+/bpwoUL+vHHH3XHHXdUwytYMn59BwAAAAAAAAAAUBS/wLuGS7/Ae+655/Tuu+8WWff111+rT58+pa7/6quv1LdvX7Vt21a7du2yLV+9erX69eun6667Tlu3bpWvr2+R/QoLC9WlSxdt375dGzduVLdu3coU69///nf9v//3/7Ro0SI99NBDkqTU1FSFhYWpVq1aOnPmTAVfhZLNmLdU6RnZlTpGRla2LBaLvL295OvtbbfYAAAAAAAAAAAAqltebo5ee/EJSdLUWQv1f089UqHjeNo5Lpf1xBNPFFvWoUOHMq2Pj48vsvzzzz+XJA0fPrxY8U6SPDw8dNddd2n79u1at25dsQLe4cOH9emnn2rXrl06ffq08vPzJUmnTp2SJO3cudNWwKtbt658fX117tw5ffvtt7rtttsq9PxLkp6RrQsZmXY5Vl5evvLy8u1yLAAAAAAAAAAAAEfIy8u1/T+jEj+CooBXRs2aNSu27Mr72pW0vl69etLv1zi90u7duyVJc+bM0RdffFHi4508eVKSlJSUVGT5W2+9pZdeekkFBQWlxnr69Gnb/z08PDR69GhNnjxZt99+uzp06KDevXure/fu6tmzp4KDg0s9zrUEBfpVeF/x6zsAAAAAAAAAAOBi8nI9bP8PrEQdhUtoXsOlS2iW9jJVZH1UVJSOHDlSpscfPny45s6dK0natGmTunfvLg8PD7322msaOHCgIiIiFBAQIJPJpI8//liPP/54kX0kyWKx6P3339d7772nAwcO2Jb7+PjokUce0bRp01S7du0yxWMvew8n6JOla+Tt7aW//vlhBfgX/yUiAAAAAAAAAACAM8nMzFRgYKD0+w+8AgICKnQcfoHnAJdO3PLlyzVgwIAy7/fJJ59Ikl588UX97W9/K7b+yl/eXclsNmvkyJEaOXKkEhMTtWHDBn377bf673//qzlz5ujEiRP69ttvy/08KnMPvIysy/u9M+fzCh0DAAAAAAAAAADASKxWq8a/9W9J0keffa1Rj95boeNQwHOA1q1ba+fOnfr111/LVcA7evSoJKl79+4lrv/pp5+ueYxGjRrp4Ycf1sMPP6wXX3xRbdq00XfffaejR4+qadOm5XgW9rkHHve+AwAAAAAAAAAArigjM6fC+1LAc4D77rtPCxcu1OzZs/Xcc8/ZfpF3LX5+F6+VmpqaWmzd4cOHtXLlynLF0bp1a9WoUUPnzp1TcnJyuQt4Fb0HHve+AwAAAAAAAAAArq6idRRRwHOMgQMHqmfPnvrxxx91++23a/bs2bruuuts6y0Wi7Zs2aJ58+Zp7NixioyMlCT16NFDX375pSZNmqRbbrlFzZo1kyTt3btX9957r8xmc7HH2rdvn6ZPn67HH39cN9xwg+2efIWFhZoxY4bOnTsnX19ftW7dutzP47nhg8q9D/e+AwAAAAAAAAAAuDqT1Wq1OjoII7tU8CrtZaro+rS0NA0cOFCbN2+WJIWHhys0NFTZ2dmKi4tTZubFS1Pu379fLVu2lCSlp6erQ4cOOnLkiLy8vNSiRQtZLBbt379fYWFheuaZZ/TKK69o+PDhmjt3riRp586duv766yVJQUFBatasmTw8PJSQkGC7Z97777+vESNG2OHVujqr1ap35y5VyqnT6nVje93Zs0uVPyYAAAAAAAAAAICzKf6TLVSLkJAQ/fjjj5o7d65uu+02ZWZmatu2bTp69KiaN2+u0aNH68cff1R0dLRtn6CgIG3cuFGPPfaYatWqpYMHDyojI0N//vOftX37djVs2LDY40RHR+vf//63HnzwQYWFhSk+Pl67du2Sr6+v7r//fm3YsKFaineSdPrsBZ09ny5vby/16Ny2Wh4TAAAAAAAAAADA2fALPFSrnNw8Jab+pubhxYuNAAAAAAAAAAAAoIAHAAAAAAAAAAAAGAqX0AQAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMxNPRAQAA4C6sVqsKsnMdHUaFePr5yGQyVfo4VquUU2iXkKqNr4dkh6du44ztwF7nX7QBzr8TPv9L7DcOWpWVXWCXmKqLv5+n3dqAnHAcsPc8ALgz5gHmATnhPCDmAgCAg1DAAwCgmhRk52phsyGODqNCBsctkJe/b6WPk1Mo9Vhtl5CqzYa+kp8dMyZnbAf2Ov+iDbj9+XfG53+JvV6HrOwCBd443y4xVZeMn4YpwN/LbsdztnHA3vMA4M6YB5gH5ITzgJgLAAAOwiU0AQAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADMTT0QEAAABcS/qedTr0SmyRZWbfAPk0iFadXkNVr/9zMnmQ1rgy2gDg3hgDAMC9MQ8AANwRMxsAAHAatW5+WDU69pWsVuWfTdXpdfOV+PELykncr/BnZzs6PFQD2gDg3hgDAMC9MQ8AANwJBTwAAOA0/CM7qE6vIba/6/Z9Rnufaam0b/+tBkPekFeNug6Nr7o9mrLEbseaG3af3Y5VlWgDRbljG4B7YwwAAPfGPAAAcCcU8JxEWlqapk6dqtWrVys+Pl4FBQUKDQ3VzTffrOeff14dOnS46v5ffPGFPvroI23btk1nzpxR7dq11bJlS/Xt21djxoyptucBAIA9efgGKKDFjTq3eYlyU+Pc6g17QMMQ/Tx+rvbNXunoUByKNkAbgHtz5zEAAMA8AABwbWZHB4BrO3jwoNq0aaMpU6Zo3759CgsLU0xMjM6cOaMFCxaoS5cuWrhwYYn75uXl6f7779c999yjlStXyt/fX+3atZO3t7c2bNigyZMnV/vzAQDAnnJT4yRJnoG1HR1KtWp8WyedWLPN0WEYAm0AcG/uOgYAAC5iHgAAuCoKeE5gxIgRSk1NVYsWLbR3714dOXJEO3fuVGpqqp566ikVFhbq6aef1pkzZ4rt+8QTT2jJkiW68847deTIEcXFxennn3/WsWPHlJaWpo8//tghzwkAgIqw5Gap4EKa8s//puyEPTr+r2eVHb9D/lFd5Nsw2tHhVavgyFClJ6Q6OoxqRxu4zF3bANwbYwAAuDfmAQCAO+ESmgaXnp6udevWSZKmTp2qli1b2tYFBATovffe09KlS5WWlqb169fr7rvvtq1fs2aNPvnkE91www1asWKFPD2Lnu6aNWvqrrvuqsZnAwC4KpNJrZ7spxZDb1Ngo7rKOX1BR1ds1s4pi1WQnevo6AwhZdF4pSwaX2RZza6D1OTP7zksJkfw9PdVfkaOo8NwCNrARS7bBhgHy+yNUR318hPt9dir6zXni8PF1v/wUV91bVdPHR/6UnuPnHVIjFWBMQBwA8wFZeaOcwHzAADAnThNAS8tLU1TpkzR0qVLlZiYqLp162rQoEGaOHGiRo0apY8//lgzZszQyJEjHR2qJMlqtcpkMlX6OLm5ubJarZKkyMjIYus9PT0VHh6utLQ05efnF1k3ffp0SdIrr7xSrHgHADCeLq8/qlZP9NOx1Vv0679WqGZUQ7V6vK/qXNdU3zzwuvT7fODOQu54SrVuul/WwnxlH9uj1KWTlZeWKJOXr22b9L0bdOT1PsX2tRbkyWopVMdlhdUctf016NlWST/ucnQYDkEbuMhV2wDjYNlNeH+HBvRson/+3w1a878kJZ3Msq37y5DW6tU5TC+9vdVlPrC9hDEAcH3MBWXnjnMB8wAAwJ04RVVn586d6tOnj1JTUxUQEKBWrVopOTlZ7777ruLi4myXjmzfvn2VxdCrVy/9+OOPOnr0qCIiIq667e7duzVs2DAtWbJEzZs3r9TjhoSEqGHDhkpKStLmzZvVunXrIuvPnDmjAwcOyGw2q0OHDrbl2dnZ+u6772Q2mxUbG6stW7Zozpw5OnLkiAIDA3XjjTfqiSeeUEhISKXiAwDYR83oRop5rI8SVv2kdU9Msy1PP35KN77xuJre3U1Hl210aIxG4BMWpeD2vSVJNTr2UWBMdx0c113HP3hakWM+lSQFte6h6xdnFNkv73SyDrzYSXX7GeOLPpVVr3NL/fL/FhRZ1mHcI2o7apA2Pv++jnz6fbF97vz8NdXtGK0Vd4zVuYMnqjFa+6INXOSKbYBxsHzyCywa/sp6bVlwlz6a0EN3jvhGkhQdUUNvPNdJP+0+palz9zg6TLtjDABcG3NB+bjjXMA8AABwJ4a/B15aWpoGDBig1NRUvfjii0pJSdH27duVmpqqyZMna9WqVdq6datMJpPatm3r6HAlSXPmzNGuXbsUGxur+Pj4Sh9v4sSJMplMGjNmjObMmaOTJ08qMzNTmzZtUv/+/ZWZmakXXnhBzZo1s+2za9cuFRQUqE6dOpo5c6a6du2qWbNmae3atfryyy81btw4RUVF6Ycffqh0fACAymt6T3eZzGbt+3BVkeWHF36n/KwcNbv3ZofFZmSBMTepdq+hOrtxsTL2by5xG0t+ruLfHKTAVt0Vdv/L1R6j3ZlMkkmyWixFFu+c9l+d3X9MXSYMl39Y7SLrWj3VX6E3tdbOaYsNWbipDNrAZc7eBhgHy2/H/tOa9NEu3dGtkZ68t4XMZpPmv3GzTCZp+CvrZbG4/q9U3HIMAFwYc0H5uftcwDwAAHBlhi/gjRo1SomJiRo5cqSmTZumoKAg27qxY8eqXbt2KigoUEREhIKDgx0a6yVvvfWWhg4dqsTERMXGxiohIaFSxxs2bJiWLVumqKgoPfbYYwoNDVVgYKC6d++u5ORkzZ8/X1OnTi2yT0pKiiTp7Nmzeumll9S3b1/t3btXubm52r17t2655RadO3dOgwYNUmJiYqXiAwBUXkj75rIUFiptR9F7VxTm5uvMrwkKad+s1H3dXdiDf5fMHkr+z6slrj/+/tOy5OcoYvTcao+tKtS9vrnSdhwpttySX6ANo2fK099H3f75jG15cLMG6vDSw/rtl0P69f3l1Rxt9aANXOTsbYBxsGL+MXuHdh44rWkvdtGMcV11Q5t6+tuMX3Qo4byjQ6s27jYGAK6MuaBi3H0uYB4AALgqQxfw9u/fr8WLFyskJESTJk0qcZuOHTtKktq1a2dbdqng16VLF/n4+NjlXnRXHjshIeGq/44fP64JEybolltu0fHjxxUbG6vjx49X+DGtVqvi4uL022+/yWw2KyIiQm3btpW/v7+OHTumWbNmaf/+/UX2yczMlCQVFBSoWbNmWrZsmVq1aiVvb2+1adNGK1asUGhoqM6dO6e33367QjFlZmYqMzPTdo8+AEDF+devpdwz6bLkFRRbl5V6Rr51asjs5RRXvq52vmHNVbvHQ0rfvVbpezcUWXdqxbs6v22lmo37QmYff4fFWFH1b4yRyaNoutYw9nol/bCzxO3P7Dmq3TOWqWGv9ooe0lsms1k93n1OkrRh9Mxiv9hyFbSBy5y5DTAOVkxBgVXDX1kvXx8PPfNgjDZsT9XbC351dFjVypXHAMDdMBdUjLvPBcwDAACjsVf9xNBZz6JFi2SxWDR48GAFBgaWuI2fn5/0hwLekSNH9Pnnn6tz587y9vbWpk2b7BZTjx49yr1PQkKChgwZovXr11foMUeMGKFZs2apc+fOWrNmjaKjo6Xf73M3fvx4TZ06VV27dtWePXvUuHFjSZKv7+Wb944cOVJeXl5Fjunv768RI0Zo/Pjx+vrrrzVt2jSVR1ZWlu2chIWFyWw2dC0YAAzBy2rWeHUpcZ2Hn48K8/JLXFeYe3G5p5+38vKLf5hRHaKjopVvqvwH/yZvP9V/+3AZtiyf0Pv/pjMbFin5P6+qxRsXLw+dvvsHJc7/q6Je/Uo+9a9+/9qriY6OkjUv226xXq0dXCnirpvU7a0RWjv8TaVu3nt5/2B/5adnlbrfrulL1OT2Tur06jDVbh2huh2i9POEuboQl1zhmO11/kUbKPP5l4HagD3PP+OgZJGXVPsVu8R0yfmMPOXmFcrby0OrN5yQvb9fFxUdLbNKPjcVURXjgLOMAYC7u9Y8aOS5wMjzgKp4LnD3eUDMBQCAcrJYLLarJLZv3147duyo0HEMXcD7/vvvJUmxsbGlbnPp8o9XFvBuvvlm24szYcIEuxbw2rRpI29v7zJte/r0advlM2NiYir0eLt27dLs2bPl5eWlzz77TOHh4bZ1fn5+mjJlirZv3661a9dq4sSJ+uCDDyRJtWrVsm1X2mNfWn706NEKxXbJpdcaAHB13iYPqX7J6wqzc+UVUKPEdR4+F7+EUZCdV5XhXVVySrLyrIWVPo7Zx7+0l+Cqgtr0UscvS/8Uwq9xjDouuxxf7skExU99QI0enaqgNr0qGO1FycnJsuSWXiwpr6u1gyslLN+s4KahanxHZ1vxJqBhiDITf7vqftaCQm0YPVP9v3pTLR+9Uye37Ne+2auuus+12Ov8izZQ5vMvA7UBe55/xkFJJm+pdhm2K4c5r/eQt5eH9sWd1StPtdd/vzmq+MR0ux0/JTlZstrvta/IOOAqYwDg7q41Dxp5LjDyPKAqngvcfR4QcwEAoBJOnjxZ4X0NXcA7duyYJBUpWl2poKDAVpy7soBXlb8GW758uSIirv2tncTERPXs2VOS9OCDD+r999+v0ONt2rRJVqtVUVFRpb4Ot99+u9auXautW7falrVs2dL2/9IKjpd+pVdYWLkElF/gAUDZeFnNUilf2s06eVY1ohvJ7O1Z7JJB/qG1lXP6vCwO+tWJJDUIa2C3X+BVNUtuluIm3a0aXe5SvX4jK328Bg0a2P0XeKW1gz869tXPunXuX7V1/MX7dTS+rZNOrNl2zf3yL2TJklcgD28vJa7drsp+Bdte51+0gXKdfxmkDdjz/DMOXvzlhT2//vbcI60U26WBXn53m7784Zi2L75bH7/eQ70eW223xwhr0MDuv7yoSkYeAwB3d6150MhzgVHnAVXDXODu84CYCwAA5XTlL/Dq16/I15gvMnQB79J93LKzS54gFy9erLS0NAUFBalp06bVHF3pkpKSFBsbq/j4eN13331asGCBPDw8KnSs9PSyf1sqJyfH9v+GDRuqSZMmOn78uOLj40v8FWNcXJwkqVGjRhWK7ZLDhw8rICCgUscAAHeQn5Wjhc2GlLgubecRNezVXiHXR+nUlsv3NfXw8VLt6yJ08qf9Je5XXQ4dPiQvf98ybHl12QVSD/t9plyis5s/V/bRXcpJOqSzGxcXW9965j55121S5uMdOnRYfnbMmK7WDv7o/KFEySrVjG6kc4cSFdQ0VOlzr/3NrW5vP6v/z96dh0dVnv8f/8wkITtrgITFhEACAdmCoiAIsahlUVDEBQSs21cUpdYfuLQVsS3KYq2CWKhVQBCpCCqgFkGRAFXDjoACCQkECBhIMDtJZn5/IIGYfTLJnJnzfl0X10XmLHPPPPd5npPnzjnH6uOtzIPH1O33I5X8yVZlpTj+F1/Oan+RAzVqfxkkB5zZ/vSDUk5uoYKuXeyUmDpc0VAvTbpK3+39STPe3iObza4X3tyhlyZdrcdHd9ac9/Y75X0OHTyowACfaqxZPXXdDxi5DwDMrqpx0MhjgRHHAdXTWGD2cUCMBQCAGsrJySl5BNnmzZsd3o+hh57Q0FBlZGRox44d6tOnT6llJ0+e1OTJkyVJ3bp1k8VicVGUZU2bNk2HDx/WbbfdpmXLlsnb2/Gv+eLz7g4dOqSUlJRyr8Jbt26dJKljx46lXr/zzjs1e/ZsLVq0SA888ECpZXa7XQsXXvhL7htuuMHh+AAAznHk463q9sTt6vzQ0FKTFVFjBsknwE9JKx17jqoZNYsbq2ZxY10dhtMc+2Kb2t58tbJT01WYXfVf/cY8MERh112p7S+9p2Off6db1s3Sda8+qs9vn1ov8RoBOeCeOUA/WDMWi7TwL9fLy2rR+D99LZvtwlWWM9/Zq9t/E6GXJl2ltZuOOfVWmu7C0/oAwEwYC2qGsaB8jAMAAE9h6PseDho0SJI0Y8YMHTx4sOT1hIQExcXFKT09XfrlIYB1bcCAARo5cmS1rjR77bXXNG3aNC1fvrxWxTv9cnvMFi1aqLCwUKNGjSr1PeTl5WnKlCnasGGDJGncuHGltp08ebIaNmyo+Ph4/eUvfym5VWZRUZGefvpp7d69W76+vnryySdrFSMAoPYyfziqH975XBFDr1XcvycravRvdNXUcer9wnilbd2npJWO/7UO3NuxddvU9qar1Gpgd53YtKfSdYPbhSr2udH6aechfT/3I2UeTNWuV/6j0D5dFPPAkHqLGc5llhygH6yZp8Z31XU9W+r5eTv0w5FzJa/bbHbd9+dN8vay6u0X+7s0RgCoKcaCmmEsAADAsxm6gDdlyhQ1a9ZMx44dU5cuXdS1a1dFRUWpd+/eioyMLLly7PLn39WVadOmacWKFWrevHmV6/r7++v555+Xj0/tby8QGBiopUuXKjAwUAkJCYqJiVFkZKS6d++ukJAQzZo1S5L02GOPafjw4aW2bdGihd5//335+vrq+eefV1hYmK655hqFhoZq1qxZ8vb21ltvvaWYmJhaxwkAqL3vnl+ohBcWqXF0G107/UG1G36dDrz9mdaPfanWzzCD+zr17QE1jAxT+ODe+inhx4pXtFjU7x8TZbVatXnSXNltF57R8v0bHyt912HFPjdaweGO33cdrmOmHKAfrJ5O7RrpL4/F6n+7T+uVRd+XWb4/MVMvvLlDA64K0+OjO7skRgBwFGNB9TAWAADg+Qx9C802bdooPj5ekydP1tdff63k5GR17txZ8+fP10MPPaT27dtL9VTAc6VBgwZpz549evXVV7V+/XqlpKQoNTVVISEhuvHGG/XQQw9p6NCh5W47ePBg7dy5U9OnT9eGDRu0c+dONW3aVHfeeaeefvppxcbG1vvnAQCUz26zad/81do3f7WrQ4GB2IttOr5x94X//1KQKU+XR25Ry96dtO0v7+rcoeOXtrfZtHnSXLe5jSLKMlMO0A9Wzw9Hzsn/6kWVrvPyv/fo5X9XfsUmABgRY0H1MBYAAOD5DF3Ak6SYmBitWbOmzOvZ2dlKTk6W1WrVlVde6ZLY6lNkZKTmzJnj0LYxMTF69913nR4TAACoH0c/+67SvzhvFNVasVPu1ultP2rfP8tOdl28jWKv58Yo5oEhOvDvT+s4YjgbOQAAAAAAgLkYvoBXkX379slutys6OloBAQFllq9YsUKStH///lI/R0RE6KqrrqrnaAEAAByXsuZ/lS4/d+i43m03utJ19s5Zpb1zVjk5MtQXcgAAAAAAAHNx2wLe3r17pUpunzlq1Khyfx4/frwWLlxYDxECAAAjyNiyQue2rVVRTobyj+2XtYG/vBu10BUT3pRfWAdXhwcnytiyQj/v2aDwCW+WvJa+/h2lzLlf7Z9dpcbXjnBpfABcg3EAAMyNcQAA4K48toBn58HGAABAUuY3q9Sk352yePmoYa/BslgsOr12rlLmPqiOf9vo6vDgRJnfrFLTuHElPxecSlb6un8psOO1Lo0LgGsxDgCAuTEOAADclccW8AAAgOcrys7U/ieulO18nhqEtJW9sEAFaUlqOnCsIh5/S/aiQmX/sEURkxbK4u1Tsl1g9LU69dFsl8aOmqusvcMnvFnS1pJkt9mUMvdBtX14jlLfecrVoQOoI4wDAGBujAMAAE/mtgW8L7/80tUhAAAAF/MOaqym14+Wl3+wwu76s87t+K/SVkxXxONvSZKy9n6lwE59S/2yLkmn17ymxr2HuyhqOKqy9v5557pSbX3q478rKOY6BXbo5eqwAdQhxgEAMDfGAQCAJ3PbAh4AAPB8P0zpo/wTh8pd1vnVnWrQvK1yj+xSi2FPSJJyE7crILJnyTqZ336kJtfeVmq7kx9MV8HJwwr/y4Y6jh51oaL2vryt81K+V+b/PlTH6ZtcGiuA2mMcAABzYxwAAJgZBTwAAGBYnWb+r8p18o7sKvklPTdxuxr3vlX65Xm453b+V63HzyxZN23VbGX+b6WiXlwvq29AHUaOulJee/+6rbP3x6vgdLK+nxAlSSrMSFPKsYdVmHFSzQdPcGn8AGqGcQAAzI1xAABgZlZXBwAAAOCo82eOS7KoQbPWkqS85D3yD+8qSco9+J3828TIyz9I+uWWihnxyxT14hfyDmrs0rjhmIra+9dt3XzwBHVfeFJd/5Wsrv9KVmDHaxX+6AKKd4AHYhwAAHNjHAAAeDIKeAAAwG3lJu0sdYscr8DGOv3pPElSxjer1PiaEZKk8+mpSn37KRXlZOrgn+K0//c9dOD/XeOyuOGYitr78rYGYC6MAwBgbowDAABPxi00AQCA22p89TA1vnpYyc8xrySU/P9cwmq1/OtXkqQGIW3U62O7S2KE81TU3vsmdilp6/J0/NvGeokPQP1jHAAAc2McAAB4Mgp4AADAI3WZu8/VIaCe0NYAykPfAADmxjgAAHB33EITAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIRn4AEAgHrj5yXFD3F1FDXj5+Xc/Xn7+2pM4hLn7rSOefv7Om1fZs8Bs7c/pAB/b2V/M87VYdRIgL9zf210t37A2eMAAHNjHHC/cUCMBQAAF6GABwAA6o3FIjn593+3Y7FY5BPg5+owXMbsOWD29seFHAgM8HF1GC5l9n4AgLkxDjAOAABQXdxCEwAAAAAAAAAAADAQ/t4FAAA3E9qni367clqFy21FxVrc9q56jQkA6hP9IACAsQAAAHg6CngAALippJXxSv1yR5nX7Ta7S+IBgPpGPwgAYCwAAACeigIeAABu6szeI0r6ML7O9u8d4Kei3Pw62z8A1Bb9IACAsQAAAHgqCngAAHi48KHXKOb+IWraJULWBt7KOZ6u4xt3a9uLi2UrLCq5/dDmSXPlHeCnTr+7WcHhodo7Z5V2vfIfV4cPALVGPwgAYCwAAADuhgIeAABuytu/gXybBpd53Xa+SIXZeZKkns/co+6TRirjx2Pat2CN8k5nKDg8VOFDr9GuWe/rfGFRyXadHxoq3ybBOrh0vfJ+ylTOiTP1+nkAoKboBwEAjAUAAMBTUcADAMBN9Zxyt3pOubvM68e+2K4N415SSI8O6j5ppE5u3qv1905XcUFhyTrb/7akzHaBrUO0qv8k5Z/5uc5jBwBnoB8EADAWAAAAT0UBDwAAN/Xju+uUvPp/ZV6/ONkQObK/JGn79PdKTVRUJHHF10xUAHAr9IMAAMYCAADgqSjgAQDgpn5OStPJ+L0VLm/YLkx2m00Z+5Ortb9ziSedGB0A1D36QQAAYwEAAPBUVlcHAAAA6o7dbpfdbq/WusV5BXUeDwDUN/pBAABjAQAAcEcU8AAA8FA/J52Q1ctLTTtHuDoUAHAJ+kEAAGMBAABwVxTwAADwUEkrN0uSYp8dLasPd80GYD70gwAAxgIAAOCuOHMBAMBNNevaTpEj+5e77OhnCUrfdVh756xS18dv0y3rZurIJ1uVdzpTwVe0UPjQa7V2yDM6/3NuvccNAM5CPwgAYCwAAACeigIeAABuKvL2/oq8vfzJig/7TFRWcpq2T1+qs/uT1el3g9X10eGS1aLcE2d0/MsdKso7X+8xA4Az0Q8CABgLAACAp7LYq/sUX+AyOTk5CgoKkiRlZ2crMDDQ1SEBgOEV5uZraft7XR2GQ8YkLpFPgJ+rwwDg5ugHAcDcGAcAAIAZOKt+wjPwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEC8XR0AzMVul/KLXR1Fzfh5SRaLc/Zlt9tVlFfgnJ3VE29/X1mc9AW44+e/yFnfg9mPAblhHjjzGID7tb/IAQBOxrmA+40Fzh4HzJ4D7tb+IgekOugHzIz2px8wcw64Y9tfjrkh5+zLHfOAcwFywFVzQxTwUK/yi6X+n7o6ipqJHyL5O+lIKcorcLsHdjvzQd3u+Pkvctb3YPZjQG6YBzys3rncrf1FDgBwMs4F3G8scPY4YPYccLf2Fzkg1UE/YGa0P/2AmXPAHdv+cswNOWdf7pgHnAuQA66aG+IWmgAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAbi7eoAgOrI2rtRB/8UV+o1q1+gfFtFq9nAsWox7HFZvEhneC6OAQAAzI1zAXOj/UEOgBwAOQBywNxof3OiReFWmlx/jxr1GiLZ7SrMSNOZjYuV+vYflJ96QOGPLXB1eECd4xgAAMDcOBcwN9of5ADIAZADIAfMjfY3Fwp4cCsBkbFqNvDekp+bD3lU+x7tpPQv3lKre/8mn0bNXRpffbvv5Aqn7Wth2B1O2xfqDsdAaRwDIAcAmA3nAqWZbRyg/csiB8gBsyEHSjNbHyByAORAGWbrB2j/0jy9/SnguYn09HTNmjVLn376qZKSklRUVKTQ0FBdf/31evLJJxUbG1tq/eTkZLVr165a+37hhRc0derUOoq8bnn5BSqw47XK3LpCBWmJpuqgAluH6LupC7V/wRpXhwIX4hjgGDAzcgAAOBcw+zhg5vYXOSCRAzB5DtAHXGDmHMAFZs4B+gHa39PbnwKeG/jxxx81cOBApaWlyWq1ql27dgoKClJiYqKWLFmiZcuWadGiRRozZkzJNn5+frruuusq3GdWVpb27NkjSerbt2+9fI66UpCWKEnyDmrq6lDqVdsbr9KxddtcHQYMgGMAZkUOAMAFnAuYm1nbX+RACTPnAC4waw7QB1xi1hzAJWbNAfqBC2h/z0UBzw1MmDBBaWlp6tixoz766CN16tRJkpSTk6M//OEPWrBggR555BENHjxYTZteOEhDQ0O1efPmCvc5c+ZM7dmzR23atNFvfvObevsstWUryFXRz+my2+0qykjTT5//U3lJOxUQ1Vt+raNdHV69ahgZqh8Wprk6DNQzjoFLOAZADgAwI84FLjHjOED7l0YOkANmRA5cYsY+QOQAyIFSzNgP0P6XmKH9KeAZXFZWljZu3ChJmjVrVknxTpICAwP1xhtvaOXKlUpPT9emTZs0YsSIau138eLFkqSxY8fKarXWUfTOd3LZVJ1cVvp2n4373K4r/u8Nl8XkCt4BfirMznd1GM5nsajzQ0PVceyNCmrTXPlnftaR1Vu1a+ZyFeUVuDo6Q+AYuMBTj4Guj9+mZl0j1axbpILDWyr72Gmt6P2oq8MyJE/NAcDs6AerxrnABWYdB2j/S8iBSzwpBxgHqubpOVBdZu0DZIYcYG6oSh6fA9Vk1n6A9r/ALO3vNgW89PR0zZw5UytXrlRqaqqaN2+u22+/XdOnT9cTTzyht99+W3PmzNHEiRNdHaokyW63y2Kx1Ho/BQUFstvtkqTIyMgyy729vRUeHq709HQVFhZWa5/bt2/Xvn37JEnjx4+vdYz1KeTmh9Wk7yjZiwuVl7JXaStn6Hx6qiw+fiXrZO2L1+EXB5fZ1l50XnZbsXqtKq7nqJ2v1YBuOv71bleH4XS9X7xPnR8cqpRPv9X3/1ytxlGt1fmBIWp2ZTv9984XpV+OBTPjGLjAU4+BXs+NUf7ZLJ3dm6QGDQNcHY6heWoOAGZHP1g1zgUuMOs4QPtfQg54Zg4wDlTN03OguszaB8gEOcDcUNU8PQeqy6z9AO1/gVna3y0uvdq1a5e6du2qWbNmKS0tTZ07d1ZhYaFef/113XXXXTpw4IAkqUePHnUWw8CBA2WxWJScnFzlunv27FHPnj11+PDhWr9vSEiIWrduLUnaunVrmeVnz57VDz/8IKvVqtjY2Grtc9GiRZKka665Rh07dqx1jPXJNyxKDXsMUqNegxV6+xR1+ONq5R5O0NE3HylZJ7hLf/Vcnl3qX5d5B+UdHKJWo//i0vidpcXVnfRTwo+lXot9drTuO7lCHe6+odxtfvvhNI1NXqbGHdvWU5Q10zi6jWLuH6zktd/oqwdm6dDS9Up4YZG+e2GRwvp1VbsRFT/T0Uw4Bi7wxGNAklZc86je7/I7rbv7L8o9leHqcAzNU3MAMDv6wapxLnCBWccB2v8ScsAzc4BxoGqengPVZdY+QB6eA8wNVY8n50BNmLUfoP0vMEv7G76Al56erltuuUVpaWl66qmndPLkSe3YsUNpaWmaMWOG1q5dq4SEBFksFnXr1s3V4UqS3nnnHe3evVtxcXFKSkqq9f6mT58ui8WiyZMn65133tGpU6eUk5OjLVu2aNiwYSXPwmvfvn2V+yosLNSyZcskSffdd1+tY3O1oJi+ajpwrDI2L1f2gbIFTkmyFRYo6eXbFdS5n8JGPVfvMTqdxSJZJLvNVurlXbP/o4wDKer9wngFhJV+YGnnh4cptG8X7Zq9XJk/HqvngKun3W39ZLFatf9fa0u9fmjpehXm5qv9yOtdFpuRcQxc4u7HgCRlHz3t6hDcgwfnAGB29IM1x7nAJWYcB0zZ/iIHLudpOcA4UHOelgPVQh9QiiflAHNDjvGkHKg2+oEStP8lntj+hi/gPfHEE0pNTdXEiRM1e/ZsBQcHlyybMmWKunfvrqKiIkVERKhhw4YujfWiV155RWPHjlVqaqri4uKqddVeZcaNG6dVq1YpKipK999/v0JDQxUUFKR+/frpxIkTWrx4sWbNmlWtfa1du1bp6eny9fXVXXfdVau4jCLsrj9LVi+deO/5cpcfnfeIbIX5ipi0sN5jqwvNe3ZQ+s6yV3faCosUP2muvAN8dd3fLz0joGH7Vop95h79tP2gvp/3ST1HW30hPTrIVlys9J2HSr1eXFCos98nK6RH1QVqs+IYuMDdjwFUHzkAAKVxLnCBWccBs7W/yIEyzJgDKM1sOUAfUJan5ABzQ47zlByoLvqB0mj/Czyx/Q1dwDtw4ICWL1+ukJAQvfTSS+Wu06tXL0lS9+7dS71+5MgR3XrrrQoODlaTJk00btw4nTlzptYxpaamKjk5udJ/R48e1QsvvKAbbrhBR48eVVxcnI4ePerwe9rtdiUmJuqnn36S1WpVRESEunXrpoCAAKWkpGj+/PkltxGtyuLFiyVJt956q5o0aeJwTEbiF9ZBTfvfraw9G5S1L77UstOrX9e5bWvU/tmPZPV1v/vnt7w2Rhav0odp67ieOv7VrnLXP7v3iPbMWaXWA3so+t5Bslit6v/645Kk+Elzy/xVgpEEtGyigrNZsp0vKrMsN+2s/Jo1ktXHbR7bWa84Bi5x52MA5SMHAKBqnAtcYsZxwJPbX+RAtXh6DqBqnpwD9AHV4yk5wNyQ4zwlB8pDP1A12v8ST2t/Qxfwli1bJpvNpjFjxigoKKjcdfz9/aVfFfCysrIUFxen1NRULVu2TAsWLFB8fLyGDRsmWy0bqH///mrXrl2V/9q3b68vv/xSkpScnKx7773X4fecMGGCnnrqKbVo0UIHDhzQkSNHtHv3bqWnp2vy5MnasmWL+vTpo2PHKr/088yZM1q79sIl6J5w+8zLhY76o2S1lvorg6w9Xyl18dOKnPKBfFtGuDQ+R0Tc2leD3n1OLa+JKfW6T8MAFWblVrjd7ldX6Oz3R3TV8+N0zd/uV/PYKO2YsUw/J56oh6gd5+Xvq+LzheUuKy648Lq3f4N6jsp9cAxc4q7HAMoiBwCg+jgXuMSM44Antr/IgRrx1BxA9XliDtAH1Iwn5ABzQ7XjCTnwa/QD1Uf7X+JJ7W/oP1m4WACLi4urcJ3U1FTpVwW8BQsW6Pjx49q0aZOuuOIKSVKbNm3Ut29fffLJJxoxYoTDMXXt2lUNGlRvoDhz5kzJ7TNjYmKqXL88u3fv1oIFC+Tj46MPPvhA4eHhJcv8/f01c+ZM7dixQxs2bND06dP15ptvVrivZcuW6fz58woNDdXNN9/sUDzliYqKktVavVqwpYG/Wv7jUDXWLC2460D1+the4XL/tjHqtaq45OeCU8lKmnWn2tw3S8FdB9b4/S4XHR0l+/m8Wu3jIh+7VVPVu1rrJn+yVQ3bhartzVcrbes+SVJg6xDlpP5U6Xb2omLFT5qrYZ+9rE73/Vanvj2g/QvWVrpNZaKjolVocc5fJlT2+YvzCuQT2KjcZV6+PpKkorzzTonDEc76Hsx+DKgGx4HZjgGjc9b3YPZ+EDA7+kHOBWTycwE5mAOubH/xOxE54MQcYBxgHJAbjgNycj9g5hyoqu2ZG6qcJ+SAOBeQTH4uIJOMA5dfSNavXz/t3LnTofc1dAEvJSVFkkoVrS5XVFSkLVu2SL8q4K1Zs0b9+vUrKd5JUp8+fRQZGanVq1fXqoD3ySefKCKi6mp1amqqBgwYIEm66667NG/ePIfeb8uWLbLb7YqKiqrwe7jpppu0YcMGJSQkVLqvRYsWSZLGjBkjLy8vh+Ipz8mTJ6u9rtU3QC2d9s7lsxXkKvGlEWrU+1a1GDqx1vs7ceKEbAUVV/RrooHFSzX5AlI++06/Wfi0EqZeuD9x2xuv0rF126rcrvDnXNnOF8mrgY9SN+yQ7BV37lU5cfKEztuLq7Fm1Sr7/LmnMtQouo2sDbzL3CohILSp8s+ck62w7C0U6ouzvgezHwOq4XFgpmPA6Jz1PZi9HwTMjn6QcwGZ/FxA9ZADzm5/8TsROeDEHGAcYByQG44DcnI/YOYcqKrtmRtyHqPmgDgXkEx+LiATjgOnTp1y+H0NXcDLycmRJOXllV/ZXb58udLT0xUcHKx27dqVvL5//36NGjWqzPpdunTR/v376zDiC44fP664uDglJSXpjjvu0JIlSxwumGVlZVV73fz8/AqX7d+/X9u2XUhsZ98+MywsrEZX4NW1jK0fKu/IbuUfP6iMzcvLLO8yd78aNL+i3G3L06pVK6f+dYFq8Mca5w6mSnapcXQbZR5MVXC7UGUtrPqAv+4fj8nq463Mg8fU7fcjlfzJVmWlONZRtApr5dSrjyr6/Om7Dqv1wB4K6Rml099eeqajl6+Pml4ZoVPfVO85j3XFWd+D2Y8B1fA4MNMxYHTO+h7M3g8CZkc/yLmATH4uoHrIAWe3v/idiBxwYg4wDjAOyA3HATm5HzBzDlTV9swNOY9Rc0CcC0gmPxeQScYBm81WcuFTy5aOl2sNXcALDQ1VRkaGduzYoT59+pRadvLkSU2ePFmS1K1bN1kslpJlGRkZaty4cZn9NW3aVD/++GOdxz1t2jQdPnxYt912m5YtWyZvb8e/5ujoaEnSoUOHlJKSUu5VeOvWrZMkdezYscL9LF68WJIUGxurK6+80uF4ynPo0CEFBgZWa928Iqn/p059+zKaxY1Vs7ixTtvfwYOH5O+kI6UwN19L29fseYjHvtimtjdfrezUdBVmV91JxjwwRGHXXantL72nY59/p1vWzdJ1rz6qz2+f6lDMBw8dlE+An0Pb/lpln//Ix1vV7Ynb1fmhoaVO0qLGDJJPgJ+SVm5ySgyOctb3YPZjQA4cB2Y5BozOWd+D2ftBwOzoBzkXkMnPBVQPOeDs9he/E5EDTswBxgHGAbnhOCAn9wNmzoGq2p65Iecxag6IcwHJ5OcCMsk4kJOTo6CgIEnS5s2bHX7f6l025SKDBg2SJM2YMUMHDx4seT0hIUFxcXFKT0+XJPXo0aPOYxkwYIBGjhxZrULVa6+9pmnTpmn58uW1Kt7pl9tjtmjRQoWFhRo1alSp7yEvL09TpkzRhg0bJEnjxo0rdx82m01LliyRJI0fP75W8aD+HVu3TW1vukqtBnbXiU17Kl03uF2oYp8brZ92HtL3cz9S5sFU7XrlPwrt00UxDwypt5gdkfnDUf3wzueKGHqt4v49WVGjf6Orpo5T7xfGK23rPiWtdLyjg3szyzEgSZF3XK9uvx+pbr8fKb9mDeUTHFDyc+Qd17s6PJcxUw4AZkc/iPIwDoAcMA/GAZSHPsA8mBtCRegHzM3M7W/oAt6UKVPUrFkzHTt2TF26dFHXrl0VFRWl3r17KzIyUjfccIP0q+ffSVKTJk2UmZlZZn9nz55V06ZNHYpl2rRpWrFihZo3b17luv7+/nr++efl4+Pj0HtdLjAwUEuXLlVgYKASEhIUExOjyMhIde/eXSEhIZo1a5Yk6bHHHtPw4cPL3cf69et1/Phx+fj4aPTo0bWOCfXr1LcH1DAyTOGDe+unhEquILVY1O8fE2W1WrV50lzZf3lQ5vdvfKz0XYcV+9xoBYcb+2ED3z2/UAkvLFLj6Da6dvqDajf8Oh14+zOtH/tSre9TDPdlpmMg+p7fKPbpexT79D3yb95Yvo2DSn6Ovuc3rg7PZcyUA4DZ0Q+iPIwDIAfMg3EA5aEPMBfmhlAe+gFzM3P7G/oWmm3atFF8fLwmT56sr7/+WsnJyercubPmz5+vhx56SO3bt5fKKeDFxMSU+6y7/fv36/rr3e8vtgYNGqQ9e/bo1Vdf1fr165WSkqLU1FSFhIToxhtv1EMPPaShQ4dWuP2iRYskSUOHDlVISEg9Rg5nsBfbdHzj7gv/t1V8n90uj9yilr07adtf3tW5Q8cvbW+zafOkuU65VLiu2W027Zu/Wvvmr3Z1KDAQMx0Dn480bmyuZKYcAMyOfhDlYRwAOWAejAMoD32AuTA3hPLQD5ibmdvf0Ffg6Zdi3Jo1a5SVlaWsrCx9++23evjhh5WTk6Pk5GRZrdYyz3QbNmyYNm/erNTU1JLXvv32WyUmJuqWW25xwaeovcjISM2ZM0cHDhxQbm6uzp8/rxMnTuijjz6qtHgnSUuXLpXdbteqVavqLV4419HPvtPRzxMqXN4oqrVip9yt09t+1L5/lj3BcfdLhQGOAZADAGBujAMgBwBzow8AQD9gbmZtf0NfgVeZffv2yW63Kzo6WgEBAaWWPfzww5ozZ46GDx+uadOmKT8/X1OmTFHv3r0rvM0kYGQpa/5X6fJzh47r3XaV3x5175xV2juHIi7cE8cAyAEAMDfGAZADgLnRBwCgHzA3s7a/2xbw9u7dK5Vz+0xJatiwob788ktNmjRJd999t7y9vTVs2DC9+uqrsloNf9EhnChjywqd27ZWRTkZyj+2X9YG/vJu1EJXTHhTfmEdXB0eAAAAUKc4H0bGlhX6ec8GhU94U5KUvv4dpcy5X+2fXaXG145wdXhwsovt3faBV5U0+26Oew91cOpNKspIk6xWefkHq+1Drysgsme1tqVPAMyH80Hz+HUfL/p5t+eRBTxJat++vdasWVPPUcFoMr9ZpSb97pTFy0cNew2WxWLR6bVzlTL3QXX820ZXhwcAAADUKc6HkfnNKjWNGydJKjiVrPR1/1Jgx2tdHRbqyOXt3fymhznuPVTk5P/IO6ixJCnjf6uU/Np96vza7mptS58AmA/ng+ZxeR8v+nmP4LEFPHi+ouxM7X/iStnO56lBSFvZCwtUkJakpgPHKuLxt2QvKlT2D1sUMWmhLN4+JdsFRl+rUx/NdmnsQF2p6rgAAACeg/Nh1CQH7DabUuY+qLYPz1HqO0+5OnQ4qLI2D5/wZqljvtFVl57vwnHvWS4W7ySpOPecZLFI9An4BfMC5sL5oLlU9zxAEv28h3DbAt6XX37p6hDgYt5BjdX0+tHy8g9W2F1/1rkd/1XaiuklJyNZe79SYKe+pQYnSTq95jU17s2zEOGZqjouAACA5+B8GDXJgbRVsxUUc50CO/Ryddiohcra/Oed68o95sVx75GOvDpOWXu/kiRFPf+pRJ+AXzAvYC6cD5pLTc4DTn38d/p5D+C2BTx4vh+m9FH+iUPlLuv86k41aN5WuUd2qcWwJyRJuYnbS93zPfPbj9Tk2ttKbXfyg+kqOHlY4X/ZUMfRA3WjtscFAABwH5wPw1k5kJfyvTL/96E6Tt9Ub7Gj7lTU5uUd8+K4dzvVOe4lqd2TiyVJZ75cpNTFT5cU8egTPB/zAubC+SB+rTrnAfTznoMCHgyr08z/VblO3pFdJZ1UbuJ2Ne59qyTJbrfr3M7/qvX4mSXrpq2arcz/rVTUi+tl9Q2ow8iBulOb4wIAALgXzofhrBw4u/FdFZxO1vcToiRJhRlpSjn2sAozTqr54Al1/CngbOW1eXnHvDju3VJ1jvvLNbthvFLefERFP5+Rd8Nm9AkmwLyAuXA+iF+rznlA9v54+nkPYXV1AICjzp85LsmiBs1aS5LykvfIP7yrJCn34HfybxMjL/8g6ZdLhjPilynqxS9K3Sse8DSVHRcAAMCzcD6M6uZA88ET1H3hSXX9V7K6/itZgR2vVfijC5jAcUMVtfmvj3lx3HusouxMnT9zouTnzG8+kndwM3kFN6VPgMS8gOlwPmgu1T0PoJ/3HBTw4LZyk3aWuiTcK7CxTn86T5KU8c0qNb5mhCTpfHqqUt9+SkU5mTr4pzjt/30PHfh/17gsbqAuVXZcAAAAz8L5MKqbA/AcFbX5r9ub495zFeeeU+JLI7Tvia7aP6m7Tq+dqw5/WiOLxUKfAIl5AdPhfNBcqnseAM/BLTThthpfPUyNrx5W8nPMKwkl/z+XsFot/3rhYc4NQtqo18d2l8QI1LfKjgsAAOBZOB9GdXPg1zr+bWO9xAfnq6jN903sUqq9Oe49l2+LcMXM/q7cZfQJEPMCpsP5oLlU9zzg1+jn3RcFPHikLnP3uToEAAAAwGU4HwY5YC60N6pCjgDmw3FvHrS15+IWmgAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA7HY7Xa7q4OA+8nJyVFQUJAkKTs7W4GBgdXazm6X8ovrODgn8/OSLBbn7Mtut6sor8A5O6sn3v6+sjjpCyjMzdfS9vc6ZV/1bUziEvkE+NV6P2Y/BuSGx4EzjwF3++yXc9b34I7fgTNzADA7d+wDLnJeP8i5gLvlgbPHAbPngLu1v8gByYk54I7tfxHjgPP254554NzfC82bA+48LyTmhjgX4FyAHKjBF+Bo/aTM+zq0FeAgi0XyN3HWWSwWpwz0cF9mPwZk8uPAzJ/9Ir4DwNzoAzgXEHlg+hwwe/vL5DlA+5u7/S8yex6QAzB7Dpi9DxA5QA7UgInTBIC7Cu3TRb9dOa3C5baiYi1ue1e9xgQAAAAAAID6wdwQADOggAfAbSWtjFfqlzvKvG63cWdgAAAAAAAAT8fcEABPRgEPgNs6s/eIkj6Mr7P9ewf4qSg3v872DwAAAAAAAMcxNwTAk1HAA+Dxwodeo5j7h6hplwhZG3gr53i6jm/crW0vLpatsKjktgubJ82Vd4CfOv3uZgWHh2rvnFXa9cp/XB0+AAAAAAAAaoG5IQDuiAIeALfl7d9Avk2Dy7xuO1+kwuw8SVLPZ+5R90kjlfHjMe1bsEZ5pzMUHB6q8KHXaNes93W+sKhku84PDZVvk2AdXLpeeT9lKufEmXr9PAAAAAAAAKg+5oYAeDIKeADcVs8pd6vnlLvLvH7si+3aMO4lhfTooO6TRurk5r1af+90FRcUlqyz/W9LymwX2DpEq/pPUv6Zn+s8dgAAAAAAANQOc0MAPBkFPABu68d31yl59f/KvH7xJCtyZH9J0vbp75U6QatI4oqvOUEDAAAAAABwE8wNAfBkFPAAuK2fk9J0Mn5vhcsbtguT3WZTxv7kau3vXOJJJ0YHAAAAAACAusTcEABPZnV1AABQl+x2u+x2e7XWLc4rqPN4AAAAAAAAUH+YGwLgrijgAfBYPyedkNXLS007R7g6FAAAAAAAANQz5oYAuDMKeAA8VtLKzZKk2GdHy+rDHYMBAAAAAADMhLkhAO6MXguA22rWtV3Jw4h/7ehnCUrfdVh756xS18dv0y3rZurIJ1uVdzpTwVe0UPjQa7V2yDM6/3NuvccNAAAAAACA2mNuCIAno4AHwG1F3t5fkbeXf5L2YZ+JykpO0/bpS3V2f7I6/W6wuj46XLJalHvijI5/uUNFeefrPWYAAAAAAAA4B3NDADyZxV7dJ3gCl8nJyVFQUJAkKTs7W4GBga4OCW6gMDdfS9vf6+owHDImcYl8AvxcHQYAAAAAAIBbcud5ITE3BKAGnFU/4Rl4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCDerg4A5mK321WUV+DqMGrE299XFovFKfuy26X8Yqfsqt74eUlO+vggBwAAAAAAAEzN7POjAKqPAh7qVVFegds9rNaZD6jNL5b6f+qUXdWb+CGSPz2F05ADAAAAAAAA5mX2+VEA1cctNAEAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAzE29UBAKha1t6NOvinuFKvWf0C5dsqWs0GjlWLYY/L4sXh7MnIAQAAAAAAAAAwD2Z7ATfS5Pp71KjXEMluV2FGms5sXKzUt/+g/NQDCn9sgavDQz0gBwAAAAAAAADA81HAA9xIQGSsmg28t+Tn5kMe1b5HOyn9i7fU6t6/yadRc5fGh7pHDgAAAAAAAACA56OAB7d138kVTtvXwrA7nLav+uTlF6jAjtcqc+sKFaQlUrwxIXIAAAAAAADAnJgfBTwbBTw3kZ6erlmzZunTTz9VUlKSioqKFBoaquuvv15PPvmkYmNjnbqd0QW2DtF3Uxdq/4I1rg7F5QrSEiVJ3kFNXR0KXIQcAAAAAAAAMBfmRwHPRwHPDfz4448aOHCg0tLSZLVa1a5dOwUFBSkxMVFLlizRsmXLtGjRIo0ZM8Yp27mDtjdepWPrtrk6jHpnK8hV0c/pstvtKspI00+f/1N5STsVENVbfq2jXR0e6gE5AAAAAAAAALPOjwJmYnV1AKjahAkTlJaWpo4dO2rfvn06fPiwdu3apbS0ND388MMqLi7WI488orNnzzplO3fQMDJUWclprg6j3p1cNlW7xzbXnnEttH9SN/302Tw17nO7OvzxY1eHhnpCDgAAAAAAAMCs86OAmXAFnsFlZWVp48aNkqRZs2apU6dOJcsCAwP1xhtvaOXKlUpPT9emTZs0YsSIWm3nDrwD/FSYne/qMFwi5OaH1aTvKNmLC5WXsldpK2fofHqqLD5+Jetk7YvX4RcHl9nWXnRedluxeq0qrueoq6/r47epWddINesWqeDwlso+dlorej/q6rAMxdNzAAAAAAAAmBdzQ9Vj5vlRwEzc5gq89PR0TZkyRR06dJCfn5/atm2rSZMmKScnRw888IAsFovmzp3r6jBL2O12p+ynoKCgZF+RkZFllnt7eys8PFySVFhYWOvt3EGrAd10/Ovdrg7DJXzDotSwxyA16jVYobdPUYc/rlbu4QQdffORknWCu/RXz+XZpf51mXdQ3sEhajX6Ly6Nvyq9nhuj0OuuVFZymgoyslwdjiF5eg4AAAAAAADzYm6oesw8PwqYiVsU8Hbt2qWuXbtq1qxZSktLU+fOnVVYWKjXX39dd911lw4cOCBJ6tGjR53FMHDgQFksFiUnJ1e57p49e9SzZ08dPny41u8bEhKi1q1bS5K2bt1aZvnZs2f1ww8/yGq1KjY2ttbbuYMWV3fSTwk/lnot9tnRuu/kCnW4+4Zyt/nth9M0NnmZGndsW09R1o+gmL5qOnCsMjYvV/aBsu0sSbbCAiW9fLuCOvdT2Kjn6j3GmlhxzaN6v8vvtO7uvyj3VIarw3ELnpYDAAAAAADAvJgbqh7mRwFzMHwBLz09XbfccovS0tL01FNP6eTJk9qxY4fS0tI0Y8YMrV27VgkJCbJYLOrWrZurw5UkvfPOO9q9e7fi4uKUlJRU6/1Nnz5dFotFkydP1jvvvKNTp04pJydHW7Zs0bBhw5STk6M//OEPat++vVO2MzSLRbJIdput1Mu7Zv9HGQdS1PuF8QoIa1pqWeeHhym0bxftmr1cmT8eq+eA617YXX+WrF468d7z5S4/Ou8R2QrzFTFpYb3HVlPZR0+7OgS35Ek5AAAAAAAAzIu5oWpgfhQwDcMX8J544gmlpqZq4sSJmj17toKDg0uWTZkyRd27d1dRUZEiIiLUsGFDl8Z60SuvvKKxY8cqNTVVcXFx1bpqrzLjxo3TqlWrFBUVpfvvv1+hoaEKCgpSv379dOLECS1evFizZs1y2nZG1rxnB6XvLHtlo62wSPGT5so7wFfX/f3SfbEbtm+l2Gfu0U/bD+r7eZ/Uc7T1wy+sg5r2v1tZezYoa198qWWnV7+uc9vWqP2zH8nqG+CyGFG3yAEAAAAAAABzYH4UMA9DF/AOHDig5cuXKyQkRC+99FK56/Tq1UuS1L1795LXVqxYoZEjRyo8PFwBAQHq1KmT/vjHPyo7O7vWMaWmpio5ObnSf0ePHtULL7ygG264QUePHlVcXJyOHj3q8Hva7XYlJibqp59+ktVqVUREhLp166aAgAClpKRo/vz5JbcRdcZ2RtHy2hhZvEqnaOu4njr+1a5y1z+794j2zFml1gN7KPreQbJYrer/+uOSpPhJc8v8VYonCR31R8lqLXUFVtaer5S6+GlFTvlAvi0jXBof6h45AAAAAAAA4FmYHwXMzdvVAVRm2bJlstlsGjNmjIKCgspdx9/fX/pVAW/27Nm64oorNH36dLVp00a7du3StGnT9PXXX2vTpk2yWh2vW/bv37/G2yQnJ+vee+/Vpk2bHHrPCRMmaP78+br66qu1bt06RUdHS5Ly8vI0depUzZo1S3369NHevXvVtm3bWm9XU1FRUdX+Tn3sVk1V7yrXi7i1r657ZYI2jH9ZaVv3Xdq+YYAKs3Ir3G73qyt0xU1X6arnx6lplwg1j43Sdy8s1M+JJ6r5acqKjopWocU5g5ulgb9a/uNQjbcL7jpQvT62V7jcv22Meq0qLvm54FSykmbdqTb3zVJw14EOxytJ0dFRsp/Pq9U+Lqpu+xuRs/LA7DkAAAAAAADMyZ3nheTEuSGzz48CZmC7rFjer18/7dy506H9GLqA9+WXX0qS4uLiKlwnNTVV+lUBb/Xq1WrevHnJzwMGDFDz5s01ZswYbd68Wddff73DMXXt2lUNGjSo1rpnzpwpuX1mTEyMQ++3e/duLViwQD4+Pvrggw8UHh5esszf318zZ87Ujh07tGHDBk2fPl1vvvlmrbZzxMmTJ6u9bgOLl9Sy6vWSP9mqhu1C1fbmq0sGqMDWIcpJ/anS7exFxYqfNFfDPntZne77rU59e0D7F6ytdnzlOXHyhM7bi6uxZtWsvgHV+fi1YivIVeJLI9So961qMXRirfd34sQJ2QoqPimoieq2vxE5Kw/MngMAAAAAAMCc3HleSE6cGzL7/ChgNqdOnXJ4W0MX8FJSUiSpVPHpckVFRdqyZYv0qwLe5cW7i6666ipJ0vHjx2sV0yeffKKIiKpvRZeamqoBAwZIku666y7NmzfPoffbsmWL7Ha7oqKiKvwebrrpJm3YsEEJCQm13s4RYWFhNboCT9X8Y42Uz77TbxY+rYSpCyVJbW+8SsfWbatyu8Kfc2U7XySvBj5K3bBDsld81VJ1tApr5dQr8OpaxtYPlXdkt/KPH1TG5uVllneZu18Nml9R7f21atXKqVfgVbf9jcZZeWD2HAAAAAAAAObkzvNCcuLckNnnRwEzsNlsJRc+tWzp+F8uGLqAl5OTI/1yy8fyLF++XOnp6QoODla7du0q3ddXX30l1eJKuJo4fvy44uLilJSUpDvuuENLliyRl5eXQ/vKysqq9rr5+fm13s4Rhw4dUmBgYLXWLczN19L291Zr3XMHUyW71Di6jTIPpiq4XaiyFlZdrb7uH4/J6uOtzIPH1O33I5X8yVZlpThe5T546KB8Avwc3v5yeUVS/0+dsqsKNYsbq2ZxY522v4MHD8nfST1FTdrfaJyVB2bPAQAAAAAAYE7uPC8kJ84NmX1+FDCDnJycksfCbd682eH9OP4wuHoQGhoqSdqxY0eZZSdPntTkyZMlSd26dZPFYqlwP8ePH9ef//xn/fa3v1WPHj3qMOILpk2bpsOHD+u2227TsmXL5O3t+Mz3xefWHTp0qOSKxF9bt26dJKljx4613s5ojn2xTW1vvlreAX4qzK76CqCYB4Yo7LortevvH2jjQ6/I6uWl6159tF5iBQAAAAAAAABnYn4UMC9DF/AGDRokSZoxY4YOHjxY8npCQoLi4uKUnp4uSZUW5bKzszV8+HA1aNBAb7/9tsOxDBgwQCNHjqzWlWavvfaapk2bpuXLl9eqeKdfbnPZokULFRYWatSoUaW+h7y8PE2ZMkUbNmyQJI0bN67W2xnNsXXb1Pamq9RqYHed2LSn0nWD24Uq9rnR+mnnIX0/9yNlHkzVrlf+o9A+XRTzwJB6ixmOi7zjenX7/Uh1+/1I+TVrKJ/ggJKfI+9w/NmVAAAAAAAAMD7mhspifhQwL0PfFG3KlCl67733dOzYMXXp0kWdOnVSfn6+Dh8+rMGDBysiIkL//e9/Sz3/7nJ5eXm65ZZbdOTIEcXHxyssLMzhWKZNm1btdf39/fX88887/F6XCwwM1NKlSzVixAglJCQoJiZG4eHhCg4O1uHDh5WbmytJeuyxxzR8+PBab2c0p749oIaRYQof3FubJ71R8YoWi/r9Y6KsVqs2T5oru+3CPZm/f+NjhQ+5RrHPjVbq+u21ulQcdS/6nt8otG+XUq/FPn2PJClt6z4lrdjkosgAAAAAAABQ15gbKov5UcC8DF3Aa9OmjeLj4zV58mR9/fXXSk5OVufOnTV//nw99NBDat++vSSVW8ArLCzUHXfcoW3btmnDhg3q3LmzCz6BcwwaNEh79uzRq6++qvXr1yslJUWpqakKCQnRjTfeqIceekhDhw512nZGYi+26fjG3Rf+b6v4QaldHrlFLXt30ra/vKtzh45f2t5m0+ZJc3XLulm67tVH9fntU+slbjjm85G0DwAAAAAAgFkxN1QW86OAeRm6gCdJMTExWrNmTZnXs7OzlZycLKvVqiuvvLLUMpvNpjFjxmjDhg369NNP1bt373qMuG5ERkZqzpw59badkRz97DvJbq9weaOo1oqdcrdOb/tR+/65uszyi5eK93pujGIeGKID//60jiMGAAAAAAAAAOdgfhQwJ8MX8Cqyb98+2e12RUdHKyAgoNSyxx57TB988IGeeeYZBQQE6JtvvilZ1r59ezVv3twFEcNRKWv+V+nyc4eO6912oytdZ++cVdo7Z5WTIwMAAAAAAACAusX8KGBOblvA27t3r1TB7TM/++wzSdLLL7+sl19+udSyd955R/fdd189RQm4XsaWFTq3ba2KcjKUf2y/rA385d2oha6Y8Kb8wjq4OjwAAAAAAAAAAPArHlnAS05OdkFEgDFlfrNKTfrdKYuXjxr2GiyLxaLTa+cqZe6D6vi3ja4OD05WlJ2p/U9cKdv5PDUIaSt7YYEK0pLUdOBYRTz+lqvDAwAAAAAAAABUg0cW8ACzqKpYYy8qVPYPWxQxaaEs3j4l2wVGX6tTH812aeyoG95BjdX0+tHy8g9W2F1/1rkd/1XaiukU7wAAAAAAAADAjbhtAe/LL790dQiAy1VVrMna+5UCO/UtVbyTpNNrXlPj3sNdFDVq44cpfZR/4lC5yzq/ulMNmrdV7pFdajHsCUlSbuJ2BUT2rOcoAQAAAAAAAAC14bYFPMAMalusyfz2IzW59rZS2538YLoKTh5W+F821HH0qAudZlb+0GJJyjuyqyQPchO3q3HvW+shMgAAAAAAAACAs1DAAwysNsUau92uczv/q9bjZ5asm7ZqtjL/t1JRL66X1TegDiOHq5w/c1ySRQ2atZYk5SXvUdioP7o6LAAAAAAAAABADVhdHQAAx5VXrPEP7ypJyj34nfzbxMjLP0iSdOrjvysjfpmiXvxC3kGNXRo36k5u0s5SV2F6BTbW6U/nuTQmAAAAAAAAAEDNcAUe4MYqKtZEPP6WMr5ZpcbXjJAknU9PVerbT6lBaKQO/ilOkmTx9lXM7G9dFjvqRuOrh6nx1cNKfo55JcGl8QAAAAAAAAAAao4CHuDGKivWnEtYrZZ//UqS1CCkjXp9bHdJjAAAAAAAAAAAoGYo4AEeqsvcfa4OAQAAAAAAAAAAOIBn4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBWOx2u93VQcD95OTkKCgoSJKUnZ2twMDAam1nt9tVlFdQx9E5l7e/rywWi1P2ZbdL+cVO2VW98fOSnPTx3bL9L3JWHpg9BwAAAAAAgDm587yQnDo35H7fgzPnRwEzcLR+8mveTo4LqJTFYpFPgJ+rw3AZi0XyN/FRZ/b2FzkAAAAAAABMinmhC/geAFQXt9AEAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPderdd99Vr1691KRJE/n7+ysmJkZ///vfZbfbXR0aAAAAAAAAAACAIXm7OgB4thYtWujPf/6zOnbsKF9fX8XHx+vRRx+Vl5eXJk2a5OrwAAAAAAAAAAAADMdi51IoOCAnJ0dBQUGSpOzsbAUGBlZ729tuu02StGrVqjqLDwAAAAAAAAAAoL7Vpn5yOW6hiXpjt9v13XffacuWLYqLi3N1OAAAAAAAAAAAAIbELTRR586dO6fWrVvr/Pnzstlsmjp1qp544glXhwUAAAAAAAAAAGBIFPBQ54KDg7Vr1y7l5uZq69atevbZZ9WqVSs98MADrg4NAAAAAAAAAADAcCjgoc5ZrVZ16NBBktStWzdlZGToj3/8IwU8AAAAAAAAAACAcvAMPNQ7m82m/Px8V4cBAAAAAAAAAABgSFyBhzo1depU9e/fX5GRkSosLNSmTZs0Y8YM/e53v3N1aAAAAAAAAAAAAIZEAQ916ueff9Yjjzyi48ePy8/PT5GRkXrppZf0yCOPuDo0AAAAAAAAAAAAQ7LY7Xa7q4OA+8nJyVFQUJAkKTs7W4GBgbXan81mU25+gYIC/J0UIQAAAAAAAAAAQP1yVv2EZ+DBEHYfSNSMfy7TV//b6epQAAAAAAAAAAAAXIoCHlzOZrNpw9YdKiwscnUoAAAAAAAAAAAALkcBrwoWi0UWi0WStHr1avXv318NGzZUSEiI7rjjDiUmJpasu2bNGg0YMECNGzdWw4YNNXz4cB06dKjCfRcUFOi1115T37591bhxY/n5+aljx46aPHmy0tPTy93m22+/1dNPP62rr75aoaGh8vX1VevWrXXnnXcqISGhwvf69NNPNWTIELVo0UI+Pj5q1qyZYmJidP/992vLli21+o5qa/eBRKWfPacAP1/1je3i0lgAAAAAAAAAAABcjWfgVeFi8W7u3LmaOHGiWrVqpZYtW+qHH35QXl6eWrdurZ07d2rp0qV68sknFRYWptDQ0JLloaGh2rNnj5o3b15qv6dOndLgwYO1c+dOWa1WtW3bVg0bNtTBgwdVUFCgK664Ql999ZUiIyNLbdehQwclJiaqadOmCgsLU4MGDXT06FGdOXNG3t7eev/99zVy5MhS28ybN0+PPfaYJKlZs2YKDw9XXl6ejh07puzsbP3f//2f/vnPf9boe3HWPVxtNpv+/u8PlH72nG6+/mrF9enp0H4AAAAAAAAAAABczVn1Ewp4VbhYwAsICNCbb76pcePGSZLOnj2r3/72t0pISNCwYcO0YcMG/fOf/yxZfubMGd18883avn27nn76ab388ssl+7Tb7YqLi9PXX3+toUOHau7cuYqIiJB+acxJkybp7bffVp8+fbR169ZS8SxevFh9+/ZVhw4dSl6z2Wz6+OOPNW7cOHl7e+vYsWMlyVFUVKQWLVooIyND8+bN08MPPywvL6+SOOLj43XmzBnddtttNfpeLk/Aqa+8pQa+fg59v4VFRcrLL5BFUnBQgCSLQ/sBAAAAAAAAAABwtfMF+Zr21IOSpFnzl+r/PTzaof1QwKvCxQLe448/rtdff73Uss8//1yDBw+ucPlnn32mIUOGqFu3btq9e3fJ659++qmGDh2qK6+8UgkJCfLzK138Ki4uVu/evbVjxw5t3rxZ1113XbVi/fOf/6y//vWvWrZsme6++25JUlpamsLCwtSkSROdPXvWwW+hrMsLeE+++LoaNPB12r4BAAAAAAAAAADc0fnzBXr1+SekXy6AeuEPDzi0H28nx+WxHnzwwTKvxcbGVmt5UlJSqdc//PBDSdL48ePLFO8kycvLS7feeqt27NihjRs3lingHTp0SO+//752796tM2fOqLCwUJJ0+vRpSdKuXbtKCnjNmzeXn5+fMjMz9cUXX+jGG2906PNXpmFggENX4HH1HQAAAAAAAAAA8CTnC7xK/h8U5O/wfrgCrwoXr8Ar7z6ldrtdVqu1Wssv/5qvvvpqbdu2TZ07d1aTJk3Kfd9Tp07p8OHDmjBhgubNm1fy+iuvvKJnnnlGRUVFFcb84IMP6l//+lfJz88884xmzJgh/VJUHDRokPr166cBAwaoYcOGNfo+LqrtPVx59h0AAAAAAAAAAPA0znoGHlfgVVN5X/DF4l51ll8uMzNTkrR///4q3zc3N7fk/1u2bNH/+3//T15eXvrrX/+q4cOHKyIiQoGBgbJYLHr77bf1wAMPlFyRd9H06dPVpk0bvfHGG9qxY4d27NihmTNnytfXV6NHj9bs2bPVtGnTKmNxpt0HEpV+9pwC/HzVN7ZLvb43AAAAAAAAAACAkXEFXhUuFuEq+pocWd6zZ0/t2rVLn3zyiW655ZZqx/LII49o/vz5mjJlSskVdZebNWuWpkyZovHjx2vhwoXl7iM1NVXx8fH64osv9J///Ec5OTkaNGiQvvjii2rHcfHzvPKvZcrOzpNPA98Ki5UVbK3snDzZ7Hb5NvCRb4MGNXpvAAAAAAAAAAAAI7Lb7So8XyBJatq0sZ64b6RD++EKPBfo0qWLdu3ape+//75GBbwjR45Ikvr161fu8m+++abKfbRp00b33HOP7rnnHj311FPq2rWr1q9fryNHjqhdu3bVjsViseh8oV35hcXKL8ytxhblKzhfqILzhdVYEwAAAAAAAAAAwH1k5+Q7vC0FPBe44447tHTpUi1YsECPP/54yb1Qq+Lvf+Fhh2lpaWWWHTp0SGvWrKlRHF26dFGjRo2UmZmpEydO1KiAJ0nBDj18kavvAAAAAAAAAACA53OsjnIBBTwXGD58uAYMGKCvv/5aN910kxYsWKArr7yyZLnNZtO3336rRYsWacqUKYqMjJQk9e/fXx9//LFeeukl3XDDDWrfvr0kad++fRo5cqSsVmuZ99q/f79effVVPfDAA7rmmmtKbnVZXFysOXPmKDMzU35+furSpebPoXt8/O013mbnvkNavuYrBfj56ulH7pGvLwU8AAAAAAAAAACAy/EMvCrUxTPwJCk9PV3Dhw/X1q1bJUnh4eEKDQ1VXl6eEhMTlZOTI0k6cOCAOnXqJEnKyspSbGysDh8+LB8fH3Xs2FE2m00HDhxQWFiYHn30Uf3pT38q9Qy8Xbt2qWfPnpKk4OBgtW/fXl5eXkpOTtaZM2ckSfPmzdOECROc8G1Vzmaz6e///kDpZ8/p5uuvVlyfnnX+ngAAAAAAAAAAAO6m7CVbqBchISH6+uuvtXDhQt14443KycnRtm3bdOTIEXXo0EGTJk3S119/rejo6JJtgoODtXnzZt1///1q0qSJfvzxR2VnZ+v//u//tGPHDrVu3brM+0RHR+utt97SXXfdpbCwMCUlJWn37t3y8/PTqFGjFB8fXy/FO0nKOJet4mKbAvx81Te25lf8AQAAAAAAAAAAmAFX4KFeFRUX6/SZTLVq0czVoQAAAAAAAAAAABgSBTwAAAAAAAAAAADAQLiFJgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADIQCHgAAAAAAAAAAAGAgFPAAAAAAAAAAAAAAA6GABwAAAAAAAAAAABgIBTwAAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGAgFPAAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAOhgAcAAAAAAAAAAAAYCAU8AAAAAAAAAAAAwEAo4AEAAAAAAAAAAAAGQgEPAAAAAAAAAAAAMBAKeAAAAAAAAAAAAICBUMADAAAAAAAAAAAADMTb1QHAPOx2u4ryClwdhkO8/X1lsVhqvR+7XcovdkpI9cbPS3LCRy/hjnngrPYHAAAAAJiXO/4+fDnmRpyzL3fMA2fPi7hbDjA3xtyYM7lj+1/EOFD/70sBD/WmKK9AS9vf6+owHDImcYl8AvxqvZ/8Yqn/p04Jqd7ED5H8ndhTuGMeOKv9AQAAAADm5Y6/D1+OuRHn7Msd88DZ8yLulgPMjTE35kzu2P4XMQ7U//tyC00AAAAAAAAAAADAQCjgAQAAAAAAAAAAAAZCAQ8AAAAAAAAAAAAwEAp4AAAAAAAAAAAAgIFQwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAADoYAHAAAAAAAAAAAAGIi3qwMAULWsvRt18E9xpV6z+gXKt1W0mg0cqxbDHpfFi8MZAAAAAAB4HuZFQA4AMGM/4FmfBvBwTa6/R416DZHsdhVmpOnMxsVKffsPyk89oPDHFrg6PAAAAAAAgDrDvAjIAQBm6gco4AFuJCAyVs0G3lvyc/Mhj2rfo52U/sVbanXv3+TTqLlL46tv951c4bR9LQy7w2n7AgAAAAAAzse8SFlmmxshB0ozW/sDMlk/QAHPTaSnp2vWrFn69NNPlZSUpKKiIoWGhur666/Xk08+qdjY2Eq3/+ijj/Tvf/9b27Zt09mzZ9W0aVN16tRJQ4YM0eTJk+vtc8C5vPwCFdjxWmVuXaGCtESP6pyqEtg6RN9NXaj9C9a4OhQAAAAAAOACZp4XEXMjkslzgPYHLvDkfsDq6gBQtR9//FFdu3bVzJkztX//foWFhSkmJkZnz57VkiVL1Lt3by1durTcbc+fP69Ro0bptttu05o1axQQEKDu3burQYMGio+P14wZM+r988C5CtISJUneQU1dHUq9anvjVTq2bpurwwAAAAAAAC5k1nkRMTdSwqw5QPsDl3hqP0ABzw1MmDBBaWlp6tixo/bt26fDhw9r165dSktL08MPP6zi4mI98sgjOnv2bJltH3zwQa1YsUK//e1vdfjwYSUmJuq7775TSkqK0tPT9fbbb7vkM8ExtoJcFf2crsJzPykvea+O/vMx5SXtVEBUb/m1jnZ1ePWqYWSospLTXB0GAAAAAACoJ8yLlGbGuRFy4BIztj8gk/UD3ELT4LKysrRx40ZJ0qxZs9SpU6eSZYGBgXrjjTe0cuVKpaena9OmTRoxYkTJ8nXr1undd9/VNddco9WrV8vbu3RzN27cWLfeems9fpoqWCzq/NBQdRx7o4LaNFf+mZ91ZPVW7Zq5XEV5Ba6OzhBOLpuqk8umlnqtcZ/bdcX/veGymFzBO8BPhdn5rg4DAAAAAADnYm6kUsyLXGLWuRFy4AKztr8pMA5UyUz9gNsU8NLT0zVz5kytXLlSqampat68uW6//XZNnz5dTzzxhN5++23NmTNHEydOdHWokiS73S6LxVLr/RQUFMhut0uSIiMjyyz39vZWeHi40tPTVVhYWGrZq6++Kkn605/+VKZ4Z0S9X7xPnR8cqpRPv9X3/1ytxlGt1fmBIWp2ZTv9984XpV++BzMLuflhNek7SvbiQuWl7FXayhk6n54qi49fyTpZ++J1+MXBZba1F52X3VasXquK6zlq52s1oJuOf73b1WEAAAAAAOBUzI1UjnmRS8w6N0IOXGDW9jcDxoGqmakfMH5VR9KuXbs0ePBgpaWlKTAwUJ07d9aJEyf0+uuvKzExseTWkT169KizGAYOHKivv/5aR44cUURERKXr7tmzR+PGjdOKFSvUoUOHWr1vSEiIWrdurePHj2vr1q3q0qVLqeVnz57VDz/8IKvVqtjY2JLX8/LytH79elmtVsXFxenbb7/VO++8o8OHDysoKEjXXnutHnzwQYWEhNQqPmdpHN1GMfcPVvLab7Txwdklr2cdPa1r//aA2o24TkdWbXZpjEbgGxalhj0GSZIa9RqsoJh++vHZfjr65iOKnPy+JCm4S3/1XJ5darvzZ07oh6euUvOhxihw11aLqztp+1+XlHot9tnR6vbE7dr85Dwdfv/LMtv89sNpat4rWqtvnqLMH4/VY7QAAAAAAFSNuZGqMS9yiVnnRsiBC8za/p6OcaB6zNQPGP4ZeOnp6brllluUlpamp556SidPntSOHTuUlpamGTNmaO3atUpISJDFYlG3bt1cHa4k6Z133tHu3bsVFxenpKSkWu9v+vTpslgsmjx5st555x2dOnVKOTk52rJli4YNG6acnBz94Q9/UPv27Uu22b17t4qKitSsWTPNnTtXffr00fz587VhwwZ9/PHHevbZZxUVFaWvvvqq1vE5Q7vb+slitWr/v9aWev3Q0vUqzM1X+5HXuyw2IwuK6aumA8cqY/NyZR/YWu46tsICJb18u4I691PYqOfqPUans1gki2S32Uq9vGv2f5RxIEW9XxivgLDSDyvt/PAwhfbtol2zl3OCAgAAAAAwJOZGas6U8yJibuRypswB2t9jMQ44xpP7AcMX8J544gmlpqZq4sSJmj17toKDg0uWTZkyRd27d1dRUZEiIiLUsGFDl8Z60SuvvKKxY8cqNTVVcXFxSk5OrtX+xo0bp1WrVikqKkr333+/QkNDFRQUpH79+unEiRNavHixZs2aVWqbkydPSpIyMjL0zDPPaMiQIdq3b58KCgq0Z88e3XDDDcrMzNTtt9+u1NTUWsXnDCE9OshWXKz0nYdKvV5cUKiz3ycrpEf7Crc1u7C7/ixZvXTivefLXX503iOyFeYrYtLCeo+tLjTv2UHpOw+Xed1WWKT4SXPlHeCr6/7+aMnrDdu3Uuwz9+in7Qf1/bxP6jlaAAAAAACqh7kRx5htXkTMjZRhthyg/T0X44DjPLUfMHQB78CBA1q+fLlCQkL00ksvlbtOr169JEndu3cvee1iwa93797y9fV1yrPoLt93cnJypf+OHj2qF154QTfccIOOHj2quLg4HT161OH3tNvtSkxM1E8//SSr1aqIiAh169ZNAQEBSklJ0fz583XgwIFS2+Tk5EiSioqK1L59e61atUqdO3dWgwYN1LVrV61evVqhoaHKzMzUP/7xD4diysnJUU5OTskz+mojoGUTFZzNku18UZlluWln5deskaw+bnHH13rnF9ZBTfvfraw9G5S1L77UstOrX9e5bWvU/tmPZPUNcFmMjmp5bYwsXqW7qdZxPXX8q13lrn927xHtmbNKrQf2UPS9g2SxWtX/9cclSfGT5pb5yyQAAAAAAIyCuRHHePK8iJgbqRZPzgHa31wYBxxntH7AWfUTQ7f2smXLZLPZNGbMGAUFBZW7jr+/v/SrAt7hw4f14Ycf6uqrr1aDBg20ZcsWp8XUv3//Gm+TnJyse++9V5s2bXLoPSdMmKD58+fr6quv1rp16xQdHS398py7qVOnatasWerTp4/27t2rtm3bSpL8/C49sHHixIny8fEptc+AgABNmDBBU6dO1eeff67Zs2erJnJzc0vaJCwsTFZr1bVgH7tVU9W73GVe/r4qPl9Y7rLigguve/s30PnCsp1XfYiOilahpfYDnKWBv1r+41A11qyZ0FF/1Nn4ZTrx3vPq+LcLt0XN2vOVUhc/rajnP5Nvy8qf21iZ6Ogo2c/nOS3WyvLgchG39tV1r0zQhvEvK23rvkvbNwxQYVZuhdvtfnWFrrjpKl31/Dg17RKh5rFR+u6Fhfo58YTDMTur/QEAAAAA5lXV78PMjTiuLudF5OS5kerOi8hAcyPOnhdxtxxgboy5MWdijtwcc+Q2m63kLok9evTQzp07HXpfQxfwvvzywsM24+LiKlzn4u0fLy/gXX/99SVfzgsvvODUAl7Xrl3VoEGDaq175syZkttnxsTEOPR+u3fv1oIFC+Tj46MPPvhA4eHhJcv8/f01c+ZM7dixQxs2bND06dP15ptvSpKaNGlSsl5F733x9SNHjjgU20UXv+uqNLB4SS3LX1acVyCfwEblLvPyvVB8LMo773iQtXTi5AmdtxfXej9W34CKvoJKBXcdqF4fV1yp928bo16rLsVXcCpZSbPuVJv7Zim460AHo73gxIkTshVUfFJQU5XlweWSP9mqhu1C1fbmq0tOUgJbhygn9adKt7MXFSt+0lwN++xldbrvtzr17QHtX7C20m2q4qz2BwAAAACYV1W/DzM3UjFXzovIyXMj1Z0XkYHmRpw9L+JuOcDcGHNjzsQcufnmyE+dOuXw+xq6gJeSkiJJpYpWlysqKiopzl1ewKvO1WCO+uSTTxQRUXWlNjU1VQMGDJAk3XXXXZo3b55D77dlyxbZ7XZFRUVV+D3cdNNN2rBhgxISEkpe69SpU8n/Kyo4XrxKr7i4dgddTa7AUwUF+txTGWoU3UbWBt5lLhEOCG2q/DPnZHPRXxZIUquwVk7764K6ZivIVeJLI9So961qMXRirffXqlUrp/+VUUV58Gspn32n3yx8WglTL9ybuO2NV+nYum1Vblf4c65s54vk1cBHqRt2SLW8zauz2h8AAAAAYF5V/T7M3IhzOHteRE6eG6nJvIgMMjfi7HkRd8sB5saYG3Mm5sjNMUd++RV4LVs6Uq68wNAFvIvPccvLK/+LWb58udLT0xUcHKx27drVc3QVO378uOLi4pSUlKQ77rhDS5YskZeXl0P7ysrKqva6+fn5Jf9v3bq1rrjiCh09elRJSUnlXsWYmJgoSWrTpo1DsV106NAhBQYGVrleYW6+lra/t9xl6bsOq/XAHgrpGaXT3156np+Xr4+aXhmhU98cKHe7+nLw0EH5BPhVY83K5RVJ/T91SkgVytj6ofKO7Fb+8YPK2Ly8zPIuc/erQfMrqr2/gwcPyd+JPUVlefBr5w6mSnapcXQbZR5MVXC7UGUtrPovFq77x2Oy+ngr8+Axdfv9SCV/slVZKY7/pYOz2h8AAAAAYF5V/T7M3IhzOHteRE6eG6nJvIgMMjfi7HkRd8sB5saYG3Mm5sjNMUeek5NT8giyzZs3V3/DXzF0AS80NFQZGRnasWOH+vTpU2rZyZMnNXnyZElSt27dZLFYXBRlWdOmTdPhw4d12223admyZfL2dvxrvvi8u0OHDiklJaXcq/DWrVsnSerYsWOp1++8807Nnj1bixYt0gMPPFBqmd1u18KFF/5y44YbbnA4Pmc58vFWdXvidnV+aGipzilqzCD5BPgpaaVjzw80o2ZxY9Usbqyrw3CaY19sU9ubr1Z2aroKs6v+K4eYB4Yo7Lortf2l93Ts8+90y7pZuu7VR/X57VPrJV4AAAAAABzB3IhzeNq8iJgbqTFPywHa3zwYB5zHU/qBurvXpBMMGjRIkjRjxgwdPHiw5PWEhATFxcUpPT1d+uUhgHVtwIABGjlyZLWuNHvttdc0bdo0LV++vFbFO/1ye8wWLVqosLBQo0aNKvU95OXlacqUKdqwYYMkady4caW2nTx5sho2bKj4+Hj95S9/KblVZlFRkZ5++mnt3r1bvr6+evLJJ2sVozNk/nBUP7zzuSKGXqu4f09W1Ojf6Kqp49T7hfFK27pPSSsdr1LDvR1bt01tb7pKrQZ214lNeypdN7hdqGKfG62fdh7S93M/UubBVO165T8K7dNFMQ8MqbeYAQAAAACoKeZGUBHmRsyN9jcPxgH8mqGvwJsyZYree+89HTt2TF26dFGnTp2Un5+vw4cPa/DgwYqIiNB///vfUs+/qyvTpk2r9rr+/v56/vnnnfK+gYGBWrp0qUaMGKGEhATFxMQoPDxcwcHBOnz4sHJzLzw48bHHHtPw4cNLbduiRQu9//77uu222/T8889rzpw5ateunRITE3XmzBl5e3vrrbfeUkxMjFNira3vnl+o7GM/KfreQWrzm1jln/1ZB97+TDtnLq/1fZrhvk59e0ANI8MUPri3Nk96o+IVLRb1+8dEWa1WbZ40V3bbhfsxf//Gxwofco1inxut1PXba3W7AAAAAAAA6hJzIygPcyPmRvubC+MALmfoK/DatGmj+Ph4DR06VH5+fkpOTlbTpk01f/58rV27tuRqtPoo4LnSoEGDtGfPHk2cOFHR0dFKS0vTgQMH1KhRIw0fPlxr1qzR3Llzy9128ODB2rlzp+699155e3tr586d8vb21p133qlvv/1W995b/Xtu1zW7zaZ981drVf9JejfiHn0Q+39KeGGRinLzq7E1PJW92KbjG3df+L+t4oekdnnkFrXs3Uk7Zy3XuUPHL21vs2nzpLmyennpulcfrZeYAQAAAABwBHMjKA9zI+ZG+5sL4wAuZ+gr8CQpJiZGa9asKfN6dna2kpOTZbVadeWVV7oktvoUGRmpOXPmOLRtTEyM3n33XafHBNSXo599V+lfmDSKaq3YKXfr9LYfte+fq8ssv3i7gF7PjVHMA0N04N91/JRUAAAAAAAAJ2JuxNxof8CcDF/Aq8i+fftkt9sVHR2tgICAMstXrFghSdq/f3+pnyMiInTVVVfVc7QAaiNlzf8qXX7u0HG92250pevsnbNKe+escnJkAAAAAAAAdY+5EXOj/QFzctsC3t69e6VKbp85atSocn8eP368Fi5cWA8RAnXj4NSbVJSRJlmt8vIPVtuHXldAZM9qbZuxZYV+3rNB4RPelCSlr39HKXPuV/tnV6nxtSPqOHIAAAAAAID6lbFlhc5tW6uinAzlH9svawN/eTdqoSsmvCm/sA6uDg9O9Ot5LzH3BcDNeWwBz84DHeGhIif/R95BjSVJGf9bpeTX7lPn13ZXa9vMb1apadw4SVLBqWSlr/uXAjteW6fxAgAAAAAAuErmN6vUpN+dsnj5qGGvwbJYLDq9dq5S5j6ojn/b6Orw4ESXz3uJuS/AtIqyM7X/iStlO5+nBiFtZS8sUEFakpoOHKuIx99ydXg14rEFPMBTXSzeSVJx7jnJYpGq0THZiwqV/cMWRUxaKLvNppS5D6rtw3OU+s5TLvw0AAAAAAAAjqnJXIjF26dku8Doa3Xqo9kujR01V1l7h094s6StJTH3BZiYd1BjNb1+tLz8gxV21591bsd/lbZiutsV7+TOBbwvv/zS1SEALnPk1XHK2vuVJCnq+QsPna2qY8ra+5UCO/WVxdtHaatmKyjmOgV26OXSzwEAAAAAAOComsyFXO70mtfUuPdwF0UNR1XW3j/vXFeqrU99/HfmvgAP9cOUPso/cajcZZ1f3akGzdsq98gutRj2hCQpN3F7tR9BZTRuW8ADPFF1Oh9JavfkYknSmS8XKXXx0yVFvMo6psxvP1KTa29TXsr3yvzfh+o4fVM9fCIAAAAAAADH1HaS9uJcyOVOfjBdBScPK/wvG+o4etSFitr78rZm7gvwbJ1m/q/KdfKO7CrpH3ITt6tx71vrITLno4AHGEh1Op/LNbthvFLefERFP5+Rd8NmFXZMdrtd53b+V63Hz9TZje+q4HSyvp8QJUkqzEhTyrGHVZhxUs0HT6iDTwUAAAAAAFBztZmkvXwu5KK0VbOV+b+Vinpxvay+AXUYOepKee3967bO3h/P3BdgYufPHJdkUYNmrSVJecl7FDbqj64OyyFWVwcAoPqKsjN1/syJkp8zv/lI3sHN5BXctNyOyT+8qyQp9+B38m8TIy//IDUfPEHdF55U138lq+u/khXY8VqFP7qAExgAAAAAAOBWqjsXol9uqZgRv0xRL34h76DGLo0bjqmovX/d1sx9AeaWm7Sz1NXYXoGNdfrTeS6NyVFcgQe4keLcc0qaOUq283myWKzybthcHf60RhaLpcKOKeLxt5TxzSo1vmaES2MHAAAAAABwpurOhZxPT1Xq20+pQWikDv4pTpJk8fZVzOxvXRY7aq6i9vZuGMK8F4ASja8epsZXDyv5OeaVBJfGUxsU8AA34tsiXDGzvyt3WWUd07mE1Wr516/K3a7j3zbWQaQAAAAAAAB1q7pzIQ1C2qjXx3aXxAjnqai9903sUuG8l5j7AuDGKOABJtBl7j5XhwAAAAAAAFBvmAsxD9oagKfiGXgAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIDwDD6hHfl5S/BBXR1Ezfl7O3Z+3v6/GJC5x7k7rmLe/r6tDAAAAAADAI5h9boR5EffLAebGmBuDc7lbH6A66AeqiwIeUI8sFsnf5EedxWKRT4Cfq8MAAAAAAAAuYPa5EeZFyAFyAGZn9j6gJriFJgAAAAAAAAAAAGAg1DnhdkL7dNFvV06rcLmtqFiL295VrzEBAAAAAADUF+ZGAMDcGAfMgQIe3FbSynilfrmjzOt2m90l8QAAAAAAANQn5kYAwNwYBzwbBTy4rTN7jyjpw/g62793gJ+KcvPrbP8AAAAAAAC1wdwIAJgb44Bno4AHjxc+9BrF3D9ETbtEyNrAWznH03V8425te3GxbIVFJZcbb540V94Bfur0u5sVHB6qvXNWadcr/3F1+AAAAAAAALXC3AgAmBvjgHuigAe35e3fQL5Ng8u8bjtfpMLsPElSz2fuUfdJI5Xx4zHtW7BGeaczFBweqvCh12jXrPd1vrCoZLvODw2Vb5NgHVy6Xnk/ZSrnxJl6/TwAAAAAAAA1wdwIAJgb44Bno4AHt9Vzyt3qOeXuMq8f+2K7Nox7SSE9Oqj7pJE6uXmv1t87XcUFhSXrbP/bkjLbBbYO0ar+k5R/5uc6jx0AAAAAAKC2mBsBAHNjHPBsFPDgtn58d52SV/+vzOsXO5fIkf0lSdunv1eqY6pI4oqv6ZgAAAAAAIDbYG4EAMyNccCzUcCD2/o5KU0n4/dWuLxhuzDZbTZl7E+u1v7OJZ50YnQAAAAAAAB1i7kRADA3xgHPZnV1AEBdstvtstvt1Vq3OK+gzuMBAAAAAACoT8yNAIC5MQ64Lwp48Fg/J52Q1ctLTTtHuDoUAAAAAACAesfcCACYG+OAe6OAB4+VtHKzJCn22dGy+nC3WAAAAAAAYC7MjQCAuTEOuDdaDG6rWdd2JQ/h/LWjnyUofddh7Z2zSl0fv023rJupI59sVd7pTAVf0ULhQ6/V2iHP6PzPufUeNwAAAAAAgDMwNwIA5sY44Nko4MFtRd7eX5G3l985fdhnorKS07R9+lKd3Z+sTr8brK6PDpesFuWeOKPjX+5QUd75eo8ZAAAAAADAWZgbAQBzYxzwbBZ7dZ9eCFwmJydHQUFBkqTs7GwFBgZWuU1hbr6Wtr+3HqJzvjGJS+QT4OfqMAAAAAAAgJty53kRMTcCAE7hzmMB40D1OVI/KQ/PwAMAAAAAAAAAAAAMhAIeAAAAAAAAAAAAYCAU8AAAAAAAAAAAAAAD8XZ1AICZ2O1SfrGro6gZPy/JYnHe/ux2u4ryCpy3w3rg7e8ri5O+BDPngDu2/eWclQdmzgG5aR44sw+QyXPAHdv/IvoA5+3PHfPA2f2AWblj21+OfsA5+3LHPHDu7wPu9/kv4hhwdRSew+w54I79gNl/J+J8mLkxxgG4CgU8oB7lF0v9P3V1FDUTP0Tyd2JPUZRX4HYPanXmA1rNnAPu2PaXc1YemDkH5KZ54OyHNJs5B9yx/S+iD3De/twxD3hYu3O4Y9tfjn7AOftyxzxwZh/gjp//Io4BV0fhOcyeA+7YD5j9dyLOh5kbYxyAq3ALTQAAAAAAAAAAAMBAKOABAAAAAAAAAAAABkIBDwAAAAAAAAAAADAQCngAAAAAAAAAAACAgVDAAwAAAAAAAAAAAAyEAh4AAAAAAAAAAABgIBTwAAAAAAAAAAAAAAPxdnUAAKqWtXejDv4prtRrVr9A+baKVrOBY9Vi2OOyeHE4ezJywNxof5ADIAcAc6MPADgOzI72BzkAcgBmREYDbqTJ9feoUa8hkt2uwow0ndm4WKlv/0H5qQcU/tgCV4eHekAOmBvtD3IA5ABgbvQBAMeB2dH+IAdADsBMKOABbiQgMlbNBt5b8nPzIY9q36OdlP7FW2p179/k06i5S+Orb/edXOG0fS0Mu8Np+6pL5IC50f5lma0fIAdADpRmtj4AoA8oi37AfDgOzI32L8ts/SA5UJrZ2l/kAEyGAp6bSE9P16xZs/Tpp58qKSlJRUVFCg0N1fXXX68nn3xSsbGxpdZPTk5Wu3btqrXvF154QVOnTq2jyFGXvPwCFdjxWmVuXaGCtERTDVCBrUP03dSF2r9gjatDcSkz5wBof/oBcgDmzgH6AMDcfYDoB/ALsx8HZmf29qcfNHcO0P4XmDkH4Pko4LmBH3/8UQMHDlRaWpqsVqvatWunoKAgJSYmasmSJVq2bJkWLVqkMWPGlGzj5+en6667rsJ9ZmVlac+ePZKkvn371svnQN0oSEuUJHkHNXV1KPWq7Y1X6di6ba4OwxDMmgO4wMztTz9wgZlzABeYNQfoA4ALzNoHiH4AlzHzcQBztz/94AVmzQHa/xKz5gA8HwU8NzBhwgSlpaWpY8eO+uijj9SpUydJUk5Ojv7whz9owYIFeuSRRzR48GA1bXqhkwoNDdXmzZsr3OfMmTO1Z88etWnTRr/5zW/q7bOgdmwFuSr6OV12u11FGWn66fN/Ki9ppwKiesuvdbSrw6tXDSND9cPCNFeHUe/IAXOj/UszYz9ADoAcuMSMfQBAH1Aa/YA5cRyYG+1fmhn7QXLgEjO2v8gBmAwFPIPLysrSxo0bJUmzZs0qKd5JUmBgoN544w2tXLlS6enp2rRpk0aMGFGt/S5evFiSNHbsWFmt1jqKvma6Pn6bmnWNVLNukQoOb6nsY6e1ovejrg7LUE4um6qTy0rf7rRxn9t1xf+94bKYXME7wE+F2fmuDsMlPD4HLBZ1fmioOo69UUFtmiv/zM86snqrds1crqK8AldH53Ie3/41YNZ+wBQ5QD9QKVPkQDWYtQ8wBfqAStEHXOKx/QDHQJU8/ThgbqRynt7+NeGx/WAVyIELzNr+MkEOMA7gcm5TwEtPT9fMmTO1cuVKpaamqnnz5rr99ts1ffp0PfHEE3r77bc1Z84cTZw40dWhSpLsdrssFkut91NQUCC73S5JioyMLLPc29tb4eHhSk9PV2FhYbX2uX37du3bt0+SNH78+FrH6Cy9nhuj/LNZOrs3SQ0aBrg6HEMKuflhNek7SvbiQuWl7FXayhk6n54qi49fyTpZ++J1+MXBZba1F52X3VasXquK6zlq52s1oJuOf73b1WG4hKfnQO8X71PnB4cq5dNv9f0/V6txVGt1fmCIml3ZTv+980Xpl/7QrDy9/WvCrP2AGXKAfqByZsiB6jBrH2AG9AGVow+4xFP7AY6Bqnn6ccDcSOU8vf1rwlP7waqQAxeYtf1lghxgHMDl3KKAt2vXLg0ePFhpaWkKDAxU586ddeLECb3++utKTEzU2bNnJUk9evSosxgGDhyor7/+WkeOHFFERESl6+7Zs0fjxo3TihUr1KFDh1q9b0hIiFq3bq3jx49r69at6tKlS6nlZ8+e1Q8//CCr1arY2Nhq7XPRokWSpGuuuUYdO3asVXzOtOKaR5V99LQkafhXf5dPoF+V25iNb1iUGvYYJElq1GuwgmL66cdn++nom48ocvL7kqTgLv3Vc3l2qe3OnzmhH566Ss2HGqPAXVstru6k7X9dUuq12GdHq9sTt2vzk/N0+P0vy2zz2w+nqXmvaK2+eYoyfzxWj9E6lyfnQOPoNoq5f7CS136jjQ/OLnk96+hpXfu3B9RuxHU6sqriWwObgSe3f02ZtR/w9BygH6iap+dAdZm1D/B09AFVow+4xBP7AY6B6vH044C5kcp5evvXhCf2g9VBDlxg1vaXCXKAcQCXM8a9EyuRnp6uW265RWlpaXrqqad08uRJ7dixQ2lpaZoxY4bWrl2rhIQEWSwWdevWzdXhSpLeeecd7d69W3FxcUpKSqr1/qZPny6LxaLJkyfrnXfe0alTp5STk6MtW7Zo2LBhJc/Ca9++fZX7Kiws1LJlyyRJ9913X61jc6aLHROqLyimr5oOHKuMzcuVfWBruevYCguU9PLtCurcT2Gjnqv3GJ3OYpEskt1mK/Xyrtn/UcaBFPV+YbwCwko/sLbzw8MU2reLds1e7tYnKOXxpBxod1s/WaxW7f/X2lKvH1q6XoW5+Wo/8nqXxWZUntT+NUI/UMLTcoB+oOY8LQeqhT7AY9EH1Jwp+wB5bj/AMeAYTzsOmBupGU9r/2rz0H7QEabMAdq/FE/LAcYBXM7wBbwnnnhCqampmjhxombPnq3g4OCSZVOmTFH37t1VVFSkiIgINWzY0KWxXvTKK69o7NixSk1NVVxcnJKTk2u1v3HjxmnVqlWKiorS/fffr9DQUAUFBalfv346ceKEFi9erFmzZlVrX2vXrlV6erp8fX1111131SouGEPYXX+WrF468d7z5S4/Ou8R2QrzFTFpYb3HVhea9+yg9J2Hy7xuKyxS/KS58g7w1XV/v3Rf6IbtWyn2mXv00/aD+n7eJ/Ucbf3wlBwI6dFBtuJipe88VOr14oJCnf0+WSE9qv4jBTPylPavCfqB0jwpB+gHHONJOVAd9AGeiz7AMWbrA+TB/QDHgOPMeBzgEjO2v6f2g44yWw7Q/mWZLQdgHoYu4B04cEDLly9XSEiIXnrppXLX6dWrlySpe/fupV4/cuSIbr31VgUHB6tJkyYaN26czpw5U+uYUlNTlZycXOm/o0eP6oUXXtANN9ygo0ePKi4uTkePHnX4Pe12uxITE/XTTz/JarUqIiJC3bp1U0BAgFJSUjR//nwdOHCgWvtavHixJOnWW29VkyZNHI4JxuEX1kFN+9+trD0blLUvvtSy06tf17lta9T+2Y9k9XW/eya3vDZGFq/S3VTruJ46/tWuctc/u/eI9sxZpdYDeyj63kGyWK3q//rjkqT4SXPL/GWSp/CUHAho2UQFZ7NkO19UZllu2ln5NWskq49b3Pm5XnlK+1eEfqBqnpQD9AOO8aQc+DX6AHOhD3CMJ/cBMlk/wDHgOE8/DlA5T29/M/WDjvLkHKD9q8eTcwDmZugC3rJly2Sz2TRmzBgFBQWVu46/v7/0qwJeVlaW4uLilJqaqmXLlmnBggWKj4/XsGHDZKtlJ9W/f3+1a9euyn/t27fXl19euNdwcnKy7r33Xoffc8KECXrqqafUokULHThwQEeOHNHu3buVnp6uyZMna8uWLerTp4+OHav88uczZ85o7doLt+Iw2u0zUTuho/4oWa2l/soka89XSl38tCKnfCDflpU/t9GIIm7tq0HvPqeW18SUet2nYYAKs3Ir3G73qyt09vsjuur5cbrmb/ereWyUdsxYpp8TT9RD1K7jCTng5e+r4vOF5S4rLrjwurd/g3qOyj14QvuXh36g+jwlB+gHHOcpOXA5+gDzoQ9wnCf2ATJhP8AxUDueehygejy1/c3WD9aGJ+YA7V8znpgDgKH/dOtiASwuLq7CdVJTU6VfFfAWLFig48ePa9OmTbriiiskSW3atFHfvn31ySefaMSIEQ7H1LVrVzVoUL0T5jNnzpTcPjMmJqbK9cuze/duLViwQD4+Pvrggw8UHh5esszf318zZ87Ujh07tGHDBk2fPl1vvvlmhftatmyZzp8/r9DQUN18880OxVOeqKgoWa1V14J97FZNVW+nvW99io6KVqGl9n+hYmngr5b/OFSNNUsL7jpQvT62V7jcv22Meq0qLvm54FSykmbdqTb3zVJw14EOxytJ0dFRsp/Pq9U+LlfdPEj+ZKsatgtV25uvVtrWfZKkwNYhykn9qdLt7EXFip80V8M+e1md7vutTn17QPsXrK10m6o4q/1l8hyoqu2L8wrkE9io3GVevj6SpKK887WOw1Gu7Adc2f5ycj9Qk7HAKP2AM/sAmTwH3Lkf4FyAcwFn9gNm5c59gDgX4FzASX1AZZ+fY6BynjAWuvO8iOgH6QdN/DsR58PMjbmqDzAafi+qvssvJOvXr5927tzp0H4MXcBLSUmRpFJFq8sVFRVpy5Yt0q8KeGvWrFG/fv1KineS1KdPH0VGRmr16tW1KuB98sknioioulqfmpqqAQMGSJLuuusuzZs3z6H327Jli+x2u6Kioir8Hm666SZt2LBBCQkJle5r0aJFkqQxY8bIy8vLoXjKc/LkyWqt18DiJbV02tvWqxMnT+i8vbgaa1bO6htQ51+BrSBXiS+NUKPet6rF0Im13t+JEydkK6j4r3pqqiZ5kPLZd/rNwqeVMPXC/anb3niVjq3bVuV2hT/nyna+SF4NfJS6YYdkr3hwrw5ntb9MngNVtX3uqQw1im4jawPvMrcNCghtqvwz52QrLHs7ofriLv2As9tfTu4HajoWGKEfcGYfIJPngDv3A+7SB8jA48BFZj8XMDN37gPkRv2AkccBcS5Q6efnGHAeo46F7jwvIjfKAfrBC4zaD8oNc4DzYebGXNkHGAm/Fznm1KlTDm9r6AJeTk6OJCkvr/zq9vLly5Wenq7g4GC1a9eu5PX9+/dr1KhRZdbv0qWL9u/fX4cRX3D8+HHFxcUpKSlJd9xxh5YsWeJwwSwrK6va6+bn51e4bP/+/dq27ULn7uzbZ4aFhVX7Cjy5aYG+VVgrp/2VWV3L2Pqh8o7sVv7xg8rYvLzM8i5z96tB8yvK3bY8rVq1cvpfGVU3D84dTJXsUuPoNso8mKrgdqHKWlh1h3fdPx6T1cdbmQePqdvvRyr5k63KSnG8o3RW+8vkOVBV26fvOqzWA3sopGeUTn976bmeXr4+anplhE59U71nfdYVd+kHnN3+cnI/UNOxwAj9gDP7AJk8B9y5H3CXPkAGHgcuMvu5gJm5cx8gN+oHjDwOiHOBSj8/x4DzGHUsdOd5EblRDtAPXmDUflBumAOcDzM35so+wEj4vaj6bDZbyYVPLVs6XrE1dAEvNDRUGRkZ2rFjh/r06VNq2cmTJzV58mRJUrdu3WSxWEqWZWRkqHHjxmX217RpU/344491Hve0adN0+PBh3XbbbVq2bJm8vR3/mqOjoyVJhw4dUkpKSrlX4a1bt06S1LFjxwr3s3jxYklSbGysrrzySofjKc+hQ4cUGBhY5XqFufla2t7xZwG60sFDB+UT4Ffr/eQVSf0/dUpIFWoWN1bN4sY6bX8HDx6SvxN7iprmwbEvtqntzVcrOzVdhdlVD5QxDwxR2HVXavtL7+nY59/plnWzdN2rj+rz26c6HLOz2l8mz4Gq2v7Ix1vV7Ynb1fmhoaUmLKLGDJJPgJ+SVm6qfRC14C79gLPbX07uBxwZC1zdDzizD5DJc8Cd+wF36QNk4HHgIrOfC5iZO/cBcqN+wMjjgDgXqPTzcww4j1HHQneeF5Eb5QD9oLH7QblhDnA+zNyYq/sAo+D3ourLyclRUFCQJGnz5s0O78fQBbxBgwbpwIEDmjFjhm688caSYlZCQoLGjh2r9PR0SVKPHj3qPJYBAwYoJCSkWoWq1157TW3atNGzzz5bq+Kdfrk9ZosWLXT69GmNGjVKS5YsKfke8vLyNHXqVG3YsEGSNG7cuHL3YbPZtGTJEknS+PHjaxVPXYq843oFtWkuSfJr1lBWH291+/1ISVJ26k9KWuHaX1bgGsfWbVPss6N1LvGETmzaU+m6we1CFfvcaP2085C+n/uR7Dabdr3yH/V6boxiHhiiA/+u47MD1ErmD0f1wzufK+aBIYr792SlbtihRlGt1fmBIUrbuk9JKx0f7ODe6AfMg34A5aEPMA/6AFTELP0AxwDE3AgqYJZ+EOWj/c2FcQCXM3QBb8qUKXrvvfd07NgxdenSRZ06dVJ+fr4OHz6swYMHKyIiQv/9739LPf9Okpo0aaLMzMwy+zt79qyaNm3qUCzTpk2r9rr+/v56/vnnHXqfXwsMDNTSpUs1YsQIJSQkKCYmRuHh4QoODtbhw4eVm3vh3ruPPfaYhg8fXu4+1q9fr+PHj8vHx0ejR492Slx1Ifqe3yi0b5dSr8U+fY8kXfhlhc7JlE59e0ANI8MUPri3Nk96o+IVLRb1+8dEWa1WbZ40V/ZfHhT6/RsfK3zINYp9brRS12+v1e0CUPe+e36hso/9pOh7B6nNb2KVf/ZnHXj7M+2cubzW92uH+6IfMBf6AfwafYC50AegPGbqBzgGwNwIymOmfhBl0f7mwjiAyxm6gNemTRvFx8dr8uTJ+vrrr5WcnKzOnTtr/vz5euihh9S+fXtJKlPAi4mJKfdZd/v379f1119fb/E7y6BBg7Rnzx69+uqrWr9+vVJSUpSamqqQkBDdeOONeuihhzR06NAKt1+0aJEkaejQoQoJCanHyGvm85GOX8YNz2Uvtun4xt0X/m+r+B7LXR65RS17d9K2v7yrc4eOX9reZtPmSXOdcrsA1D27zaZ981dr3/zVrg4FBkI/YC70A/g1+gBzoQ9AeczUD3AMgLkRlMdM/SDKov3/P3t3Hh5Veb9//J7JvgIhwYQgCQkQAoIKAi4ghCIKoqgBUVFocSkoSlt+4L7QWpStVnEp1K+ISiNlkSKgoiB7hWAIIDtZgGxg2BNC1vn9IZkSk0AyM8mcZN6v6/Iyc855znxmzjkPk7nzPMe18O8ALmV2dgFXEhsbq+XLl+vcuXM6d+6ctmzZoieeeEL5+flKT0+X2WyudE+3wYMHa+PGjcrIyLAu27Jli1JSUnTXXXc54VXYLyoqSrNmzdLevXt1/vx5FRUVKSsrS0uXLr1seCdJ8+fPl8Vi0RdffFFv9QKOdOSrrTrydWK165u0C1fXSQ/o+Lb92v2Pyr/onj6QoeSZ/1boTZ0U++igOq4WQF2gHwBcG30AAPoBAK6OftC1cfwB12ToEXiXs3v3blksFrVv316+vr4V1j3xxBOaNWuWhgwZosmTJ+vChQuaNGmSevToUe00kwCM6/Dy/152/ZmDmfq0zeWnh9016wvtmkWIDTRU9AOAa6MPAEA/AMDV0Q+6No4/4JoabIC3a9cuqYrpMyUpMDBQa9as0fjx4/XAAw/I3d1dgwcP1ltvvSWz2fCDDoHLOvDqAJWcypHMZrn5BOjqx9+Rb9T1NWp7atMind25WhFjP5Ak5X43V4dnjVb081+o6Y331HHlAOpa+TV+9aNvKXXGA7pwdI/Mnj5yb9JCrcd+IO+wts4uEXXo13286OddDn0AgKqc2rRIZ7atUEn+KfoFAI0en4dcA9+NoTr0AWhsGmWAJ0nR0dFavnx5PVcF1L2oif+Wu39TSdKp/36h9Ld/q45v76hR29M/fKGguJGSpMJj6cpd9U/5xdxYp/UCqD+XXuMhA55QYLeBMplMOr7iXR1+9zHF/HWts0tEHbr0+It+3iXRBwCoyukfvlCzXvfL5OZBvwCg0ePzkGvguzFUhz4AjU2jDfCAxqr8A4oklZ4/I5lMkqSSvNPa88w1KisqkGfw1bIUF6owJ1VBfR9R5NMfylJSrLx9mxQ5/mNZysp0+N3HdPUTs5Qxd4ITXw0c7UrnARq2yx3fiLEfWK9xk7uHmtzwvznt/drfqGNLZzi1dtivpsdfF29STj/f+NAHAPi12vwOYHL3sLajX0Bjxu9EjRufhyC+G3Np9AFwNQ02wFuzZo2zSwCcJu2tkTq363tJUrtXVkoXP7wE3fqQ3HwCFDb8ZZ1J+kY5i6ZYf0E5t+t7+XW4WSZ3D+V8MUP+sbfIr203p74OON6VzgM0bJc7vme3r7Je4792fPnbatqDe8A2dLU5/sf+8zf6+UaIPgDAr9Xmd4BL0S+gMeN3osaNz0Mox3djrok+AK6mwQZ4QGO0b9JNupB1sMp1Hd/aLs+QqyVJbf74iSTpxJp5yvjkWesHlfNpyWox+Jlffk75scL836e3LFWzG+9VweGfdPq/ixUzZX09vCI4Wk3OkcudB2j4qju+5df4r2UvnKLC7EOK+Mvqeq8VjleT408/37jRBwCuxd7PflX1DfQLaOj4nQh8Hmrc+G4MV0IfAFdCgAcYSIdp/63V9s37jdLhD8ao5OwJuQc2V0FasvUfrfMpP6ppj7slSRaLRWe2f6PwUdN0cu2nKjyerp/GtpMkFZ/K0eGjT6j4VLZCBo6tg1cFR6rJOVLdeYDGoarje+k1fqmcL2bo9H+XqN2fv5PZy9dJFcORanL88/ZsoJ9vxOgDANdiz2e/qvoG+gU0BvxOBD4PNW58N4YroQ+AKzE7uwAANVeSd1pFJ7Ksj0//sFTuAc3lFhCkohOZkkzybB4uSSpI3ymfiM6SpPMHtsqnVazcfPwVMnCsrv04W53/ma7O/0yXX8yNinhyDh9QGonLnQdo+Ko7vpde4+WO/edvOrUhQe3+/G2F+wOg4arp8aefb7zoAwD8Wk1/BxD9AlwIvxM1bnweAt+NuTb6ALgaRuABDUjp+TNKnTZMZUUFMpnMcg8MUduXlstkMul86vYK0wK4+TXV8ZXvK/LpD3Xqhy/UtOc9Tq0d9eNy5wEavuqOr3tgcIVrvCg3QxkfTZBnaJQOvBQnSTK5eyl2xhan1A3HqOnxR+NFHwDg12r6OwD9AlwJvxM1bnweAt+NuTb6ALgaAjygAfFqEaHYGVurXNe0+2A17T7Y+jh2ZqL15zOJX+qq17+vsl3MX9fWQaVwlsudB2j4qju+u8d1qnCNewa3Urf/WJxSI+pOTY//r9HPNx70AQB+raa/A9AvwJXwO1Hjxuch8N2Ya6MPgKshwANcQKd3dzu7BAB1iGvctXH8wTkAoCr0DQBcCX0eroRzpHHj+KKx4h54AAAAAAAAAAAAgIEQ4AEAAAAAAAAAAAAGQoAHAAAAAAAAAAAAGAgBHgAAAAAAAAAAAGAgJovFYnF2EWh48vPz5e/vL0nKy8uTn5/fFdtYLBaVFBTWQ3WO5+7jJZPJ8ViVHwAAbuhJREFUZPd+LBbpQqlDSqo33m6SA166VUM8Dxx1/OXi50Dx+QuaH/2wI0pyihEpn8nD19vu/bjyOSD6AMnFz4GG3A/QBzhuf/QDrqsh9wGiH+CzgIPegIZ8HXAN2L+fhnj+X4rvRhyzr4Z4Hrj670R8Hua7MVfvA8rxe1HN2ZKfVMXdwXUB1TKZTA75sN+QmUySj4tfda5+HnAOwNXPAVfvA8Q54PI4/vQDgKv3A/QBcOVrgPP/F658DojzQOIccPlzgOPv2scftePClwoAoKEKvamT7lgyudr1ZSWl+uTq4fVaE4D6RT8AuDb6ALg6rgEAAIDGjwAPANBgpS7ZoIw1SZWWW8qYHRpwFfQDgGujD4Cr4xoAAABovAjwAAAN1oldaUpdvKHO9u/u662S8xfqbP8A7Ec/ALg2+gC4Oq4BAACAxosADwDQ6EXc2VOxowcpqFOkzJ7uys/MVebaHdr2509UVlxinYJo4/h35e7rrQ6/u10BEaHaNesLJc/8t7PLB+AA9AOAa6MPgKvjGgAAAGh4CPAAAA2Wu4+nvIICKi0vKypRcV6BJOn65x7UtePjdWr/Ue2es1wFx08pICJUEXf2VPL0z1VUXGJt1/HxO+XVLEAH5n+ngp9PKz/rRL2+HgC1Rz8AuDb6ALg6rgEAAIDGiwAPANBgXT/pAV0/6YFKy49++6NWj3xDwde11bXj45W9cZe+e3iKSguLrdv8+NfPKrXzCw/WF73H68KJs3VeOwDHoB8AXBt9AFwd1wAAAEDjRYAHAGiw9n+6Sulf/rfS8vIvHKLie0uSfpzyrwpfVlQnZdE6vqwAGhj6AcC10QfA1XENAAAANF4EeACAButsao6yN+yqdn1gmzBZysp0ak96jfZ3JiXbgdUBqA/0A4Brow+Aq+MaAAAAaLzMzi4AAIC6ZLFYZLFYarRtaUFhndcDoP7RDwCujT4Aro5rAAAAoGEiwAMANFpnU7NkdnNTUMdIZ5cCwEnoBwDXRh8AV8c1AAAA0HAR4AEAGq3UJRslSV2ff0hmD2aNBlwR/QDg2ugD4Oq4BgAAABouPr0BABqs5p3bKCq+d5XrjnyVqNzkQ9o16wt1fvpe3bVqmtKWbVbB8dMKaN1CEXfeqBWDnlPR2fP1XjcAx6EfAFwbfQBcHdcAAABA40WABwBosKLu662o+6r+wmLxTeN0Lj1HP06Zr5N70tXhdwPV+ckhktmk81knlLkmSSUFRfVeMwDHoh8AXBt9AFwd1wAAAEDjZbLU9E7GwCXy8/Pl7+8vScrLy5Ofn5+zSwJgcMXnL2h+9MPOLsNmI1I+k4evt7PLABq0htwP0AcA9mvIfYDoB+AgDfk64BoAAACoGUflJ9wDDwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAANxd3YBAAC4EovFovMFJc4uo1Z8fdxlMpmcXQbQKFgs0oVSZ1dRO95ukiO7AIvFopKCQsftsB64+3g5rB/kHADXANeAq3P1c8DV+wBxDgAAUGMEeAAA1KPzBSXyv/ETZ5dRK3k/jJSfr4ezywAahQulUu+Vzq6idjYMknwc+FtDSUGh5kc/7Lgd1oMRKZ/Jw9fbIfviHADXANeAq3P1c8DV+wBxDgAAUGNMoQkAAAAAAAAAAAAYCAEeAAAAAAAAAAAAYCAEeAAAAAAAAAAAAICBEOABAAAAAAAAAAAABkKABwAAAAAAAAAAABgIAR4AAAAAAAAAAABgIAR4AAAAAAAAAAAAgIG4O7sAAAAAAJd3btdaHXgprsIys7efvFq2V/O+j6jF4KdlcuOjfWPGOQBXxzUAzgHXxvEHALgi/mUDAAAAGohmtz6oJt0GSRaLik/l6MTaT5Tx0Z90IWOvIp6a4+zyUA84B+DquAbAOeDaOP4AAFdCgAcAAAA0EL5RXdW878PWxyGDntTuJzso99sP1fLhv8qjSYhT60Pd4xyAq+MaAOeAa+P4AwBcCQEeAAAA0EC5efvJL+ZGnd68SIU5KS73pdVvsxc5bF8fhw112L7qk6ufA66Oa4BrAJwDrt4PuPrxBwA0bgR4DURubq6mT5+ulStXKjU1VSUlJQoNDdWtt96qP/7xj+ratatD2wEAAKBhKMxJkSS5+wc5u5R65RcerK2vfqw9c5Y7uxSnc9VzwNVxDfwP1wBc9RygH/iFqx5/AEDjR4DXAOzfv199+/ZVTk6OzGaz2rRpI39/f6WkpOizzz5TQkKC5s2bpxEjRjikHQAAAIyprPC8Ss7mymKxqORUjn7++h8qSN0u33Y95B3e3tnl1aurb7tBR1dtc3YZ9Y5zAOW4BrgGXBXnwP+4Yj/A8QcAuBICvAZg7NixysnJUUxMjJYuXaoOHTpIkvLz8/WnP/1Jc+bM0ZgxYzRw4EAFBQXZ3Q4AAADGlJ3wqrITXq2wrOlN96n1799zWk3OEhgVqn0f5zi7jHrHOYByXAP/wzXgWjgH/scV+wGOPwDAlRDgGdy5c+e0du1aSdL06dOtIZwk+fn56b333tOSJUuUm5ur9evX65577rGrHQA4U+en71XzzlFq3iVKARFXKe/ocS3q8aSzyzKkvz7TTS88dp1Gv7Jec5cerLT++/8bpJuubaFuD/xHuw+dckqNQG3RB1xZ8O1PqNnNw2QpLVbB4V3KWTJVRbkZMnl4W7c5t3uDDv15YKW2lpIiWcpK1e2L0nqu2vHcfb1VnHfB2WU4RWM/B+gHaoZrgGvAlTX2c6CmXLUf4PgDAFxJgwnwcnNzNW3aNC1ZskQZGRkKCQnRfffdpylTpuiZZ57RRx99pFmzZmncuHHOLlWSZLFYZDKZ7N5PYWGhLBaLJCkqKqrSend3d0VERCg3N1fFxcV2twMAZ+r2wghdOHlOJ3elyjPQ19nlGNpr72/XXX1a62//r6dW/TdTmcfOW9f94eFO6ts9TM/9PZHwDg0KfcCVeYW1U+B1/SVJTboNlH9sL+1/vpeOfDBGURM/lyQFdOqt6xfkVWhXdCJL+ybcoJA7jfFZ2V4t+3RR5rodzi7DKRr7OUA/UDNcA1wDrqyxnwM15ar9AMcfAOBKzM4uoCaSk5PVuXNnTZ8+XTk5OerYsaOKi4v1zjvvaPjw4dq7d68k6brrrquzGvr27SuTyaT09PQrbrtz505df/31OnTokN3PGxwcrPDwcEnS5s2bK60/efKk9u3bJ7PZrK5du9rdDgCcaVHPJ/V5p99p1QN/0fljBE+XU1xSplEvrZefj4f+77Xe1uXtI5vor0/foB92Htf0j3c5tUagtugDas8/9mYF9X1EpzYuUN7eyp/5JKmsuFCpb94n/469FDbshXqvsS606N5BPyfur7Cs6/MP6bfZi9T2gX5Vtrlj8WQ9kp6gpjFX11OV9aOxnQP0AzXDNfA/XANobOdATdEP/MJVjz8AwDUYPsDLzc3VXXfdpZycHE2YMEHZ2dlKSkpSTk6Opk6dqhUrVigxMVEmk0ldunRxdrmSpLlz52rHjh2Ki4tTamqq3fubMmWKTCaTJk6cqLlz5+rYsWPKz8/Xpk2bNHjwYOs97aKjox3SDgCcJe/IcWeX0KBs33tCb/zfDt1+Sys9Hh8js9mkT/56q0wmadRL61VWZnF2iUCt0AfYJmz4y5LZTVn/eqXK9UfeH6Oy4guKHP9xvddWJ0wmySRZysoqLE6e8W+d2ntYPV4bJd+wivd37vjEYIXe3EnJMxbo9P6j9Vxw3WtM5wD9QA1wDVTCNYDGdA7UCP1ABS53/AEALsPwAd4zzzyjjIwMjRs3TjNmzFBAQIB13aRJk3TttdeqpKREkZGRCgwMdGqt5WbOnKlHHnlEGRkZiouLq9GovcsZOXKkvvjiC7Vr106jR49WaGio/P391atXL2VlZemTTz7R9OnTHdYOANBw/GXOdiXvO6EZE3po1vM3qWfnFnpx1o86kH7G2aUBqCfeYW0V1PsBndu5Wud2b6iw7viX7+jMtuWKfn6pzF6NYyq2kOvbKnd75ZkuyopLtGH8u3L39dItf/vf/aICo1uq63MP6ucfD+in95fVc7X1w9XOAVfHNVAZ1wBc7RygH6jI1Y4/AMB1GDrA27t3rxYsWKDg4GC98cYbVW7TrVs3SdK1115rXbZo0SLFx8crIiJCvr6+6tChg1588UXl5eVVuY/ayMjIUHp6+mX/O3LkiF577TX169dPR44cUVxcnI4cOWLzc1osFqWkpOjnn3+W2WxWZGSkunTpIl9fXx0+fFizZ8+2TiPqiHYAgIajpMSiUS+tl7eXm54cHqsNSTn6+2c/ObssAPUsdNiLktlc4S/Pz+38XhmfPKuoSQvldVWkU+uz1VU3xsrkVvFXlvC465X5fXKV25/claads75QeN/r1P7h/jKZzer9ztOSpA3j3600UqExaazngKvjGqg5rgE01nOAfqBmGuvxBwC4NndnF3A5CQkJKisr04gRI+Tv71/lNj4+PtKvArwZM2aodevWmjJlilq1aqXk5GRNnjxZ69at0/r162U2255b9u7duwZbVZSenq6HH35Y69evt+k5x44dq9mzZ6t79+5atWqV2rdvL0kqKCjQq6++qunTp+umm27Srl27dPXVV9vdrrbatWtn13sKwDV4WMx6VT2cXYbN2rdrr2KT/b/slslDCnrJITWVO5NXpMKiUnl6uGnlhqOyOHjmzHbt28usYsfuFC6pIfcDjuoDTJ4+uurvB2vdLqBzX3X7T/UXt8/Vser2Ran1ceGxdKVOv1+tfjtdAZ372lyvJLVv306WogK79nGpmp4HkXffrFtmjtXqUW8qZ/Pu/7UP9FXxufPVttvx1iK1HnCDbnhlpII6RSqkazttfe1jnU3JsrlmRx1/ufg50JD7ADnwPOAacN1rQA38OuDfwvo/B4zSDziyD5CN54Azj7/q4PMQAKBxK7vkD2Z69eql7du327QfQwd4a9askSTFxcVVu01GRob0qwDvyy+/VEhIiPVxnz59FBISohEjRmjjxo269dZbba6pc+fO8vT0rNG2J06csE6fGRsba9Pz7dixQ3PmzJGHh4cWLlyoiIgI6zofHx9NmzZNSUlJWr16taZMmaIPPvjArna2yM7OtrktANfhaXKTrnJ2FbbLys5SkaW0BltegclTCqrBdrUw98+95enhpj0pp/TSE9fp39+kKTXjnMP2n52VJVmKHLY/uK6G3A84qg8we/nW+VtQVnheKW/coyY97laLO8fZvb+srCyVFVb/JWFt1fQ8SF+2WYFtQnX17d2tX1r6hQcrP+Pny7azlJRqw/h3NfirN9Xht3fo2Ja92jNnhV01O+zfABc/BxpyHyAHngdcA657DaiBXwf8W1j/54BR+gFH9gGqh3PA0cdfdfB5CADgOo4dO2ZzW0MHeIcPH5akCuHTpUpKSrRp0ybpVwHepeFduRtuuEGSlJmZaVdNy5YtU2TklYfdZ2RkqE+fPpKk4cOH6/3337fp+TZt2iSLxaJ27dpV+z4MGDBAq1evVmJiot3tbBEWFsYIPABX5GExSw14tpaWYS0dNgLPkX/28PRDHRXXo6VeeGeb/vP9YSUtuEcf/bm3+o5e6bDnCGvZkhF4cIiG3A84qg8wefo4pJ7LObV5sQrSduhC5gGd2rig0vpO7+6RZ0jrGu+vZcuWDh+BV9Pz4PBXW/Wbj59V4qsfS5Kuvu0GHV217Yrtis+eV1lRidw8PZSxOkn2Dk121PGXi58DDbkPkAPPA64B170G1MCvA/4tdM45YIR+wJF9gOrhHHD08VcdfB4CADRuZWVl1oFPV11l+5+tGDrAy8/Ply5O+ViVBQsWKDc3VwEBAWrTps1l9/X9999LdoyEq43MzEzFxcUpNTVVQ4cO1WeffSY3Nzeb9nXuXM1HUFy4cMHudrY4ePCg/Pz87NoHgMav+PwFzY9+2Nll2OzAwQPy8PW2ez/554vlf+MnDqmpbetAvTH+Bm3d9bOmfrRTZWUWvfZBkt4Y311PP9RRs/61xyHPc/DAAfn5ejhkX3BtDbkfcFQfUFAi9XZcvl6l5nGPqHncIw7b34EDB+XjwN8aanMenDmQIVmkpu1b6fSBDAW0CdW5j6/814u3/P0pmT3cdfrAUXX5Q7zSl23WucO2/9Wjo46/XPwcaMh9gBx4HnANuO41oAZ+HfBvoWP2VdtzwAj9gCP7ANXDOeDo4686+DwEAGjc8vPzrbeF27hxo837MfSwqdDQUElSUlJSpXXZ2dmaOHGiJKlLly4ymUzV7iczM1Mvv/yy7rjjDl133XV1WPEvJk+erEOHDunee+9VQkKC3N1t/xe+/L51Bw8etI5I/LVVq1ZJkmJiYuxuBwBoGEwm6eO/3Co3s0mjXlqnsrJf/qJ22txdSvzpZ70x/gZFtQpwdpkAYLej327T1bd3l7uvt4rzrvyX77GPDlLYLdco+W8LtfbxmTK7uemWt56sl1qBusA1AIB+AAAA12Tovx3p37+/9u7dq6lTp+q2226zhlKJiYl65JFHlJubK0mXDeXy8vI0ZMgQeXp66qOPPrK5lj59+ig4OLhGI83efvtttWrVSs8//7xd4Z0uTnPZokULHT9+XMOGDdNnn31mfR8KCgr06quvavXq1ZKkkSNH2t0OAJwpauit8m/1yzTI3s0DZfZwV5c/xEuS8jJ+Vuqi9U6u0DgmjOqsW66/SpPe2qp9aWesy8vKLPrty+vrZCpNoK7RB6AqR1dtU9fnH9KZlCxlrd952W0D2oSq6wsP6eftB/XTu0tlKStT8sx/q9sLIxT76CDt/T/6RKOjH6iMa8C1cA2gKvQDAAC4JkMHeJMmTdK//vUvHT16VJ06dVKHDh104cIFHTp0SAMHDlRkZKS++eabCve/u1RBQYHuuusupaWlacOGDQoLC7O5lsmTJ9d4Wx8fH73yyis2P9el/Pz8NH/+fN1zzz1KTExUbGysIiIiFBAQoEOHDun8+V9uoPvUU09pyJAhdrcDAGdq/+BvFHpzpwrLuj77oCQpZ/NuvrC4qEObJvrLU1313x3HNXPeT5XW70k5XSdTaQJ1jT4AVTm2Za8Co8IUMbCHNo5/r/oNTSb1+vs4mc1mbRz/rixlv9yr56f3/qOIQT3V9YWHlPHdj3ZNI4i6Rz9QGdeAa+EaQFXoBwAAcE2GDvBatWqlDRs2aOLEiVq3bp3S09PVsWNHzZ49W48//riio6MlqcoAr7i4WEOHDtW2bdu0evVqdezY0QmvwDH69++vnTt36q233tJ3332nw4cPKyMjQ8HBwbrtttv0+OOP684773RYOwBwlq/jX3V2CQ3CvrQz8uk+77LbvPl/O/Xm/13+r3MBo6EPQFUspWXKXLvjl58vfhFZlU5j7tJVPTpo218+1ZmDmf9rX1amjePf1V2rpuuWt57U1/dxnhkZ/UBlXAOuhWsAVaEfAADANRk6wJOk2NhYLV++vNLyvLw8paeny2w265prrqmwrqysTCNGjNDq1au1cuVK9ejRox4rrhtRUVGaNWtWvbUDAAAAjOLIV1sli6Xa9U3ahavrpAd0fNt+7f7Hl5XWnz6QwfRhaNC4BgDQDwAA4HoMH+BVZ/fu3bJYLGrfvr18fX0rrHvqqae0cOFCPffcc/L19dUPP/xgXRcdHa2QkBAnVAwAAADAFoeX//ey688czNSnbR667Da7Zn2hXbO+cHBlQP3gGgBAPwAAgOtpsAHerl27pGqmz/zqq68kSW+++abefPPNCuvmzp2r3/72t/VUJQAAAADUj1ObFunsztW6+tG3lDrjAV04ukdmTx+5N2mh1mM/kHdYW2eXCDjFqU2LdGbbCpXkn+K6aOToB8E5AABoTBplgJeenu6EigAAAADnKsk7rT3PXKOyogJ5Bl8tS3GhCnNSFdT3EUU+/aGzy0MdO/3DFwqKGylJChnwhAK7DZTJZNLxFe/q8LuPKeava51dIuAUp3/4Qs163S+TmwfXRSNHPwjOAQBAY9IoAzwAAADAFbn7N1XQrQ/JzSdAYcNf1pmkb5SzaArhXSNxuYA2YuwHytu3SZHjP5bJ3UNNbhhkbefX/kYdWzrDqbUDdeVKf7hgKSmucG2U47pomOgHwTkAAHAlDTbAW7NmjbNLAAAAAOrVvkk36ULWwSrXdXxruzxDrtb5tGS1GPyMJOl8yo/yjbq+nqtEXblcQHt2+yr5dbi5QkBR7vjyt9W0xxCn1AzUtSv94cK5Xd9XeW1wXTRM9IPgHAAAuJIGG+ABAAAArqbDtP9ecZuCtGRraHc+5Uc17XF3PVSG+lJdQHt6y1I1u/HeSttnL5yiwuxDivjL6nqvFXAEe/9woaprg+uiYaMfBOcAAMBVEOABAAAAjUTRiUxJJnk2D5ckFaTvVNiwF51dFhyoqoDWYrHozPZvFD5qWoVtc76YodP/XaJ2f/5OZi9fJ1UM2MeeP1yo6trgumj46AfBOQAAcBVmZxcAAAAAwDHOp26vMPLEza+pjq9836k1wXGqCmh9Ijrr/IGt8mkVKzcff+u2x/7zN53akKB2f/5W7v5NnVg1ULequy4kVbo2uC4aPvpBcA4AAFwJI/AAAACARqJp98Fq2n2w9XHszESn1gPHqi6gdQ8MVtOe91iXF+VmKOOjCfIMjdKBl+IkSSZ3L8XO2OKUuoG6VN11Efn0hzr1wxfWa4PronGgHwTnAADAlRDgAQAAAEADUF1Au3tcJ131+vfW5Z7BrdTtPxan1AjUt8v94cKZxC+t1wbXReNAPwjOAQCAKyHAAwAAAIAGrNO7u51dAmBIXBuug2MNzgEAQGPEPfAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEJPFYuGOrqi1/Px8+fv7S5Ly8vLk5+fn7JIAGJzFYlFJQaGzy7CZu4+XTCaT3fuxWCw6X1DikJrqi6+Pu0NeO9CQ+wHH9QHShVKHlFRvvN0kR3YBDfE8cNTxl4ufAw3x2F/KkZ8FGtr7wDXguH6wIR7/cvxb6Jh9NcRzwJF9gDgHAAAuwFH5CQEebEKABwAAAAAAAAAAUJGj8hOm0AQAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjzUqU8//VTdunVTs2bN5OPjo9jYWP3tb3+TxWJxdmkAAAAAAAAAAACG5O7sAtC4tWjRQi+//LJiYmLk5eWlDRs26Mknn5Sbm5vGjx/v7PIAAAAAAAAAAAAMx2RhKBRskJ+fL39/f0lSXl6e/Pz8atz23nvvlSR98cUXdVYfAAAAAAAAAABAfbMnP7kUU2ii3lgsFm3dulWbNm1SXFycs8sBAAAAAAAAAAAwJKbQRJ07c+aMwsPDVVRUpLKyMr366qt65plnnF0WAAAAAAAAAACAIRHgoc4FBAQoOTlZ58+f1+bNm/X888+rZcuWevTRR51dGgAAAAAAAAAAgOEQ4KHOmc1mtW3bVpLUpUsXnTp1Si+++CIBHgAAAAAAAAAAQBW4Bx7qXVlZmS5cuODsMgAAAAAAAAAAAAyJEXioU6+++qp69+6tqKgoFRcXa/369Zo6dap+97vfObs0AAAAAAAAAAAAQyLAQ506e/asxowZo8zMTHl7eysqKkpvvPGGxowZ4+zSAAAAAAAAAAAADMlksVgszi4CDU9+fr78/f0lSXl5efLz87NrfyUlpTp19pxCgpo6qEIAAAAAAAAAAID65aj8hHvgwRC27dqvv324UCu//8HZpQAAAAAAAAAAADgVAd4VmEwmmUwmSdKXX36p3r17KzAwUMHBwRo6dKhSUlKs2y5fvlx9+vRR06ZNFRgYqCFDhujgwYPV7ruwsFBvv/22br75ZjVt2lTe3t6KiYnRxIkTlZubW2WbLVu26Nlnn1X37t0VGhoqLy8vhYeH6/7771diYmK1z7Vy5UoNGjRILVq0kIeHh5o3b67Y2FiNHj1amzZtsus9sldJSam+/+92WSwWNQn0d2otAAAAAAAAAAAAzsYUmldQHt69++67GjdunFq2bKmrrrpK+/btU0FBgcLDw7V9+3bNnz9ff/zjHxUWFqbQ0FDr+tDQUO3cuVMhISEV9nvs2DENHDhQ27dvl9ls1tVXX63AwEAdOHBAhYWFat26tb7//ntFRUVVaNe2bVulpKQoKChIYWFh8vT01JEjR3TixAm5u7vr888/V3x8fIU277//vp566ilJUvPmzRUREaGCggIdPXpUeXl5+v3vf69//OMftXpfHDmF5g/b92jpqo0K8PfVpN8/IA93bs0IAAAAAAAAAAAaHqbQrGeTJk3SvHnzlJmZqaSkJGVkZKh79+7KzMzU6NGj9cILL2jevHnKyspSUlKSjh49qm7duiknJ0czZ86ssC+LxaLhw4dr+/btuvPOO5WSkqL09HTt3LlTubm5Gj16tI4cOaKHH364Uh2vvPKKDh48qBMnTuinn35SUlKSjh8/riVLlsjb21uPPfaY8vLyrNuXlJTopZdeki4GeceOHdOPP/6oPXv26OzZs1q3bp1uv/32engHq1Y++k6S+t54HeEdAAAAAAAAAABweYzAu4LyEXhPP/203nnnnQrrvv76aw0cOLDa9V999ZUGDRqkLl26aMeOHdblK1eu1J133qlrrrlGiYmJ8vb2rtCutLRUPXr0UFJSkjZu3KhbbrmlRrW+/PLLev3115WQkKAHHnhAkpSTk6OwsDA1a9ZMJ0+etPFdqOzSBPnVmR/K08v7im2qUlRcrAuFRTKZTArw85FkcliNAAAAAAAAAAAA9amo8IImT3hMkjR99nz9vycesmk/DHeqoccee6zSsq5du9ZofWpqaoXlixcvliSNGjWqUngnSW5ubrr77ruVlJSktWvXVgrwDh48qM8//1w7duzQiRMnVFxcLEk6fvy4JCk5Odka4IWEhMjb21unT5/Wt99+q9tuu82m1385Z/PPy7O41K59WCwWnc0777CaAAAAAAAAAAAA6ltRUaH157y8Apv3Q4BXQ9HR0ZWWXXpfu6rWt2jRQro4x+mldu7cKUmaO3euli5dWuXzHTt2TJKUmZlZYfnMmTP13HPPqaSkpNpaT5w4Yf3Zzc1N48eP19SpUzVgwAB17dpV/fv3V69evdSnTx8FBgZWu5+aCvTztWkEHqPvAAAAAAAAAABAY1JU6Gb92d/fx+b9MIXmFZRPoVnd22TL+nbt2unQoUM1ev5Ro0bp448/liRt2rRJvXr1kpubmyZPnqwhQ4YoMjJSfn5+MplM+uijj/Too49WaCNJZWVlev/99/Xee+9p37591uVeXl566KGHNGPGDAUFBdWonnL23oSxpKRU0+d8rjPn8nVX/5t1S7dratUeAAAAAAAAAADAaOzNT8oxAs8Jyg/csmXLdNddd9W43aeffipJmjBhgl588cVK6y8deXcps9mscePGady4ccrIyNCGDRv07bff6t///rfmzp2ro0eP6ttvv63Va/D19bWOLPT19a1VW0natmu/zpzLV4C/r3pc26HW7QEAAAAAAAAAAIzG3vykHAGeE3Tq1EnJycn66aefahXgpaWlSZJ69epV5foffvjhivto1aqVHnzwQT344IOaMGGCOnfurO+++05paWlq06ZNjWsxmUz6aNE3OmfT/K0Wncv/pV1xcYmmz15gwz4AAAAAAAAAAACMK8DfR0+Pus+mtgR4TjB06FDNnz9fc+bM0dNPP20dkXclPj6/zJWak5NTad3Bgwe1fPnyWtXRqVMnNWnSRKdPn1ZWVlatAjxJOpdXoLN5+bVq82sXCot0obDIrn0AAAAAAAAAAAA0JgR4TjBkyBD16dNH69at04ABAzRnzhxdc83/7gFXVlamLVu2aN68eZo0aZKioqIkSb1799Z//vMfvfHGG+rXr5+io6MlSbt371Z8fLzMZnOl59qzZ4/eeustPfroo+rZs6f1nnylpaWaNWuWTp8+LW9vb3Xq1KnWryPAppsv/jL6zmKxyNvLU54eHjbsAwAAAAAAAAAAwNhsy1F+YbJYLBaHVtPIlAde1b1Ntq7Pzc3VkCFDtHnzZklSRESEQkNDVVBQoJSUFOXn/zKybe/everQ4Zd7xJ07d05du3bVoUOH5OHhoZiYGJWVlWnv3r0KCwvTk08+qZdeekmjRo3Sxx9/LElKTk7W9ddfL0kKCAhQdHS03NzclJ6ebr1n3vvvv6+xY8c64N26sh+279HSVRsV4O+rSb9/QB7uZMgAAAAAAAAAAACXqjxkC/UiODhY69at08cff6zbbrtN+fn52rZtm9LS0tS2bVuNHz9e69atU/v27a1tAgICtHHjRo0ePVrNmjXT/v37lZeXp9///vdKSkpSeHh4pedp3769PvzwQw0fPlxhYWFKTU3Vjh075O3trWHDhmnDhg31Ft6VlJTq+/9ulyT1vfE6wjsAAAAAAAAAAIAqMAIP9ebUmXOav/Q7ncnLZ/QdAAAAAAAAAABANQjwUK8sFovOnMtX00B/Z5cCAAAAAAAAAABgSAR4AAAAAAAAAAAAgIFwDzwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMxN3ZBQBVSUxMrNX2ubm5WrJkie677z4FBwfXuF337t1tqA4AAAAAAAAAAKDuMAIPjUJubq4+/PBD5ebmOrsUAAAAAAAAAAAAuxDgAQAAAAAAAAAAAAZCgAcAAAAAAAAAAAAYCAEeAAAAAAAAAAAAYCAEeGgUAgICdMcddyggIMDZpQAAAAAAAAAAANjFZLFYLM4uAvi1xMTEenme7t2718vzAAAAAAAAAAAA1BQj8NAoFBYW6ujRoyosLHR2KQAAAAAAAAAAAHYhwEOjkJaWpvj4eKWlpTm7FAAAAAAAAAAAALu4O7sAAK7FYrGotLTU2WXUipubm0wmk7PLAAAAAAAAAAC4CAI8APWqtLRUixcvdnYZtRIfHy93d7pLAAAAAAAAAED9YApNAAAAAAAAAAAAwEAI8AAAAAAAAAAAAAADYU44NAodOnTQ1q1bnV0GAAAAAAAAAACA3RiBBwAAAAAAAAAAABgIAR4ahcOHD2v06NE6fPiws0sBAAAAAAAAAACwCwEeGoWCggL99NNPKigocHYpAAAAAAAAAAAAdiHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8NAohIWFafLkyQoLC3N2KQAAAAAAAAAAAHZxd3YBgCM0adJEAwcOdHYZaKDKyspkNvP3DAAAAAAAAAAAY+Ab6wYiNzdXzz77rDp37iw/Pz95eXkpIiJCjzzyiJKSkq7YfunSpbrrrrsUFhYmLy8vhYWFKS4uTtOnT6+X+uvaqVOntHDhQp06dcrZpaCelJWVKTMzUxs2bNDixYv1+eefa+HChVq5cqX27t2rgoKCGu0nOTlZzz77rE6cOFHnNQMAAAAAAAAAUBMmi8VicXYRuLz9+/erb9++ysnJkdlsVps2beTv76+UlBTl5eXJzc1N8+bN04gRIyq1LSoq0ogRI7Ro0SJJUlRUlJo3b65jx44pMzNTTZs2VW5urhNe1eUlJibWavt9+/Zp5MiR+uSTT9ShQ4cat+vevbsN1cEeJSUlWrx4sU1tLRaLDhw4oFWrVunHH3/UhQsXqt3WZDIpMjJSv/nNb9SrVy95e3tX2iY5OVkzZ85UcXGxQkND9dprr6lp06aVtouPj5e7OwOWAQAAAAAAAAD1g2+kG4CxY8cqJydHMTExWrp0qTWgys/P15/+9CfNmTNHY8aM0cCBAxUUFFSh7WOPPaZFixbpjjvu0Lvvvqvo6GjrutOnT2v9+vX1/noAW+zZs0fz5s3T4cOHa7S9xWJRWlqaPvzwQ82fP1+DBg3SPffcIw8PD+lX4Z0kRUZGyt/fv05fAwAAAAAAAAAANUGAZ3Dnzp3T2rVrJUnTp0+vMLrMz89P7733npYsWaLc3FytX79e99xzj3X9qlWr9Omnn6pnz5768ssvK40gatq0qe6+++56fDVA7V24cEEJCQn65ptvKiz39/dXx44d1aZNG1199dXy8vJSWVmZcnNzlZaWpgMHDujIkSOSpIKCAi1evFhbt27V2LFjdfbs2Qrh3Y033qhx48Yxyg4AAAAAAAAAYAgN5tvq3NxcTZs2TUuWLFFGRoZCQkJ03333acqUKXrmmWf00UcfadasWRo3bpyzS5Uujv4xmUx276ewsFDls5xGRUVVWu/u7q6IiAjl5uZaw4hyb731liTppZdeIphAg3Tq1ClNmTJFR48etS5r06aNBg4cqBtvvFGenp6XbZ+WlqZVq1Zp/fr1Ki0t1dGjR/Xiiy/KbDartLRUIrwDAAAAAAAAABiQ2dkF1ERycrI6d+6s6dOnKycnRx07dlRxcbHeeecdDR8+XHv37pUkXXfddXVWQ9++fWUymZSenn7FbXfu3Knrr79ehw4dsvt5g4ODFR4eLknavHlzpfUnT57Uvn37ZDab1bVrV+vygoICfffddzKbzYqLi9OWLVs0ZswY9e/fX/fcc4/efPNNQ977zla+vr7q2bOnfH19nV0KHOT06dOaPHmyNbzz9PTUyJEj9de//lW33nrrFcM7XQz7fv/732vKlCmKjIyULobrhHcAAAAAAAAAACMzfICXm5uru+66Szk5OZowYYKys7OVlJSknJwcTZ06VStWrFBiYqJMJpO6dOni7HIlSXPnztWOHTsUFxen1NRUu/c3ZcoUmUwmTZw4UXPnztWxY8eUn5+vTZs2afDgwdZ74V16f7sdO3aopKREzZs317vvvqubbrpJs2fP1urVq/Wf//xHzz//vNq1a6fvv//e7vqMoHXr1po1a5Zat27t7FLgACUlJZo6dapycnKki0H2m2++qUGDBslsrn23FRERoWHDhlVq269fP8I7AAAAAAAAAIDhGD7Ae+aZZ5SRkaFx48ZpxowZCggIsK6bNGmSrr32WpWUlCgyMlKBgYFOrbXczJkz9cgjjygjI0NxcXE1GrV3OSNHjtQXX3yhdu3aafTo0QoNDZW/v7969eqlrKwsffLJJ5o+fXqFNtnZ2dLFKQife+45DRo0SLt371ZhYaF27typfv366fTp07rvvvuUkZFhV31GUFpaqry8POvIKjRsS5YsUVpamnQxvHvttdfUsmVLm/eXnJysv//97yorK6uwfM6cOSooKLC7XgAAAAAAAAAAHMnQAd7evXu1YMECBQcH64033qhym27dukmSrr32Wuuy8sCvR48e8vLycsi96C7dd3p6+mX/O3LkiF577TX169dPR44cUVxcnI4cOWLzc1osFqWkpOjnn3+W2WxWZGSkunTpIl9fXx0+fFizZ8+2TiNaLj8/X7o4kik6OlpffPGFOnbsKE9PT3Xu3FlffvmlQkNDdfr0af3973+3qab8/Hzl5+db79HnTAcPHlS/fv108OBBZ5cCO6WlpWnp0qWSJDc3N02YMEHBwcE27y85OVkzZ8603iOyZ8+e6tChg3RxhO/8+fMdVDkAAAAAAAAAAI5h6LnjEhISVFZWphEjRsjf37/KbXx8fKRfBXiHDh3S4sWL1b17d3l6emrTpk0Oq6l37961bpOenq6HH35Y69evt+k5x44dq9mzZ6t79+5atWqV2rdvL128z92rr76q6dOn66abbtKuXbt09dVXS5K8vb2t7ceNGycPD48K+/T19dXYsWP16quv6uuvv9aMGTNqVdP58+etxyQsLMymaQ0vZ+jQobXa/vjx45Kkr776Sj/++GON29177721rg328fT0rDaQl6SFCxdaR8rdc889atOmjc3P9evwrvyedydOnNCkSZNUWFio1atX6+6771aLFi2q3U/79u1VVFRkcx0AAAAAAAAAANcTGhqqbdu22dTW0AHemjVrJElxcXHVblM+/eOlAd6tt95qnULytddec2iA17lzZ3l6etZo2xMnTlinz4yNjbXp+Xbs2KE5c+bIw8NDCxcuVEREhHWdj4+Ppk2bpqSkJK1evVpTpkzRBx98IElq1qyZdbvqnrt8eflUhbYqf68dqXwEYU2VT4NYUFBQq7aZmZm1rg328fLyqnbd8ePHtX37dklSUFCQXQFrdeGdu7u7rrrqKt19991auHChLBaLVq9erQcffLDafWVlZamwsNDmWgAAAAAAAAAAqA1DB3iHDx+WpAqh1aVKSkqs4dylAZ6jR4NdatmyZYqMjLzidhkZGerTp48kafjw4Xr//fdter5NmzbJYrGoXbt21b4PAwYM0OrVq5WYmGhdVj5FoC6OeKpK+Sg9e+8bVxcj8Pz8/Gq1fXlo5+PjU6u24eHhta4N9rlcAL5mzRrrlKz9+/eXu7ttXdTlwrtyv/nNb7RkyRKVlpbq+++/17Bhw6p9vpYtWzICDwAAAAAAAABQK6GhoTa3NXSAVx7KlI+u+rUFCxYoNzdXAQEBdk2z52iZmZmKi4tTamqqhg4dqs8++0xubm427evcuXM13vbChQvWn8PDw9W6dWsdOXJEqampVY5iTElJkSS1atXKptrKHTx4sNaB25VcGkbWxL59+5SQkKCBAwdWCC+vxJb7/8E+JSUlWrx4cZXrdu7cKUkymUzq16+fTfuvSXgnSU2bNtUNN9ygLVu26OzZs0pPT1fbtm2r3OeBAwdsDhMBAAAAAAAAAKituhuq5gDlyWRSUlKlddnZ2Zo4caIkqUuXLjKZTPVeX3UmT56sQ4cO6d5771VCQoJdX/yX3+/u4MGD1hGJv7Zq1SpJUkxMTIXl999/vyRp3rx5ldpYLBZ9/PHHkmRzUGIkbdu21TfffFNtAAPjKy4utp7jLVu2VNOmTWu9j5qGd+UunV42NTXV5toBAAAAAAAAAHAkQwd4/fv3lyRNnTpVBw4csC5PTExUXFyccnNzJUnXXXddndfSp08fxcfH12ik2dtvv63JkydrwYIFdo/aGTBggFq0aKHi4mINGzaswvtQUFCgSZMmafXq1ZKkkSNHVmg7ceJEBQYGasOGDfrLX/5inSqzpKREzz77rHbs2CEvLy/98Y9/tKtGI3B3d1ezZs0YJdWAZWRkWM9RW0bU1ja8k6SoqCjrzwR4AAAAAAAAAACjMHSAN2nSJDVv3lxHjx5Vp06d1LlzZ7Vr1049evRQVFSUdeTYpfe/qyuTJ0/WokWLFBIScsVtfXx89Morr8jDw8Pu5/Xz89P8+fPl5+enxMRExcbGKioqStdee62Cg4M1ffp0SdJTTz2lIUOGVGjbokULff755/Ly8tIrr7yisLAw9ezZU6GhoZo+fbrc3d314YcfVhiF1FBlZGRowoQJysjIcHYpsNHJkyetP4eFhdWqrS3h3a+f5/Tp07WuGQAAAAAAAACAumDoAK9Vq1basGGD7rzzTnl7eys9PV1BQUGaPXu2VqxYYR2NVh8BnjP1799fO3fu1Lhx49S+fXvl5ORo7969atKkiYYMGaLly5fr3XffrbLtwIEDtX37dj388MNyd3fX9u3b5e7urvvvv19btmzRww8/XO+vpy7k5eVpw4YNysvLc3YpsFFYWJiGDRumIUOG1Oo+hnl5eXr77bdrHd7pYth+1113KT4+Xr1797arfgAAAAAAAAAAHMXw8w3GxsZq+fLllZbn5eUpPT1dZrNZ11xzjVNqq09RUVGaNWuWTW1jY2P16aefOrwmwJFatmyp+Pj4Wrfz9/fXuHHj9NZbb+mGG26ocXini1OvjhgxwoZqAQAAAAAAAACoO4YP8Kqze/duWSwWtW/fXr6+vpXWL1q0SJK0Z8+eCo8jIyN1ww031HO1AOpSt27d9NprrykyMpL7IAIAAAAAAAAAGrwG+033rl27pMtMnzls2LAqH48aNUoff/xxPVQIoD61bdvW2SUAAAAAAAAAAOAQjTbAs1gs9VwRnCkkJETjx49XSEiIs0sBAAAAAAAAAACwS6MN8OBamjdvzr3MAAAAAAAAAABAo9BgA7w1a9Y4uwQYyNmzZ7V161b16NFDgYGBzi4HAAAAAAAAAADAZmZnFwA4QlZWll544QVlZWU5uxQAAAAAAAAAAAC7EOABAAAAAAAAAAAABkKABwAAAAAAAAAAABgIAR4AAAAAAAAAAABgIAR4aBS8vLwUExMjLy8vZ5cCAAAAAAAAAABgF3dnFwA4Qps2bfTpp586uwwAAAAAAAAAAAC7MQIPAAAAAAAAAAAAMBACPDQK+/fv1y233KL9+/c7uxQAAAAAAAAAAAC7EOChUbBYLCouLpbFYnF2KQAAAAAAAAAAAHbhHngA6pWbm5vi4+Mdtr/psxfoXH6+Avz8NPH3wys9dgQ3NzeH7AcAAAAAAAAAgJogwANQr0wmk9zdHdf1WCSVWX75v7u7e6XHAAAAAAAAAAA0NEyhCQAAAAAAAAAAABgIw1PQKERGRiohIUHh4eHOLgUAAAAAAAAAAMAuBHhoFLy9vRUdHe3sMgAAAAAAAAAAAOzGFJpoFLKzs/X6668rOzvb2aUAAAAAAAAAAADYhQAPjcKZM2e0bNkynTlzxtmlAAAAAAAAAAAA2IUADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwEOjYDabdf3118ts5pQGAAAAAAAAAAANG2kHGoWysjJt375dZWVlzi4FAAAAAAAAAADALgR4AAAAAAAAAAAAgIEQ4AEAAAAAAAAAAAAGQoAHAAAAAAAAAAAAGAgBHhqFgIAA3XHHHQoICHB2KQAAAAAAAAAAAHZxd3YBgCOEh4frz3/+s7PLAAAAAAAAAAAAsBsj8NAoFBYW6ujRoyosLHR2KQAAAAAAAAAAAHYhwEOjkJaWpvj4eKWlpTm7FAAAAAAAAAAAALsQ4AEAAAAAAAAAAAAGwj3wgHpksVhUWlrq7DJqxc3NTSaTydllAAAAAAAAAADgMgjwgHpUWlqqxYsXO7uMWomPj5e7O10FAAAAAAAAAAD1hSk0AQAAAAAAAAAAAANhWA0ahQ4dOmjr1q3OLgMAAAAAAAAAAMBujMADAAAAAAAAAAAADIQAD43C4cOHNXr0aB0+fNjZpQAAAAAAAAAAANiFAA+NQkFBgX766ScVFBQ4uxQAAAAAAAAAAAC7EOABAAAAAAAAAAAABkKABwAAAAAAAAAAABgIAR4AAAAAAAAAAABgIAR4aBTCwsI0efJkhYWFObsUAAAAAAAAAAAAu7g7uwDAEZo0aaKBAwc6uwwAAAAAAAAAAAC7MQKvgcjNzdWzzz6rzp07y8/PT15eXoqIiNAjjzyipKSkStunp6fLZDLV6L/Jkyc75TU50qlTp7Rw4UKdOnXK2aXUu4KCAh0/flw5OTnKzc1VSUlJrdonJydrz549dVYfAAAAAAAAAACoHUbgNQD79+9X3759lZOTI7PZrDZt2sjf318pKSn67LPPlJCQoHnz5mnEiBHWNt7e3rrllluq3ee5c+e0c+dOSdLNN99cL6+jLh07dkzTp09X586d1axZM2eXU6fOnz+vjRs3au/evUpLS1NOTk6F9R4eHmrdurWioqJ0ww03qHPnzjKbq87qk5OTNXPmTJnNZj333HOKjY2tp1cBAAAAAAAAAACqQ4DXAIwdO1Y5OTmKiYnR0qVL1aFDB0lSfn6+/vSnP2nOnDkaM2aMBg4cqKCgIElSaGioNm7cWO0+p02bpp07d6pVq1b6zW9+U2+vBbbLzs7WihUrtGHDBhUWFla7XXFxsVJSUpSSkqJvv/1WV111lW677TYNGDBAnp6e1u3Kw7vi4mJJ0tq1awnwAAAAAAAAAAAwAAI8gzt37pzWrl0rSZo+fbo1vJMkPz8/vffee1qyZIlyc3O1fv163XPPPTXa7yeffCJJeuSRR6odnQVjKCsr08qVK7VgwQJr2FbOw8NDERERCgkJkZubmwoLC5WRkaHs7GzrNseOHdNnn32m1atXa8yYMYqJiakU3t144416/PHH6/21AQAAAAAAAACAyhpMgJebm6tp06ZpyZIlysjIUEhIiO677z5NmTJFzzzzjD766CPNmjVL48aNc3apkiSLxSKTyWT3fgoLC2WxWCRJUVFRlda7u7srIiJCubm5lcKd6vz444/avXu3JGnUqFF214i6c/r0ab311lvav3+/dZm3t7d69+6tvn37KiIiQu7ulS/j8+fP66efftK3336rXbt2SRdH8L322mu66aablJiYWCG8GzduXJX7AQAAAAAAAAAA9a9BfGOfnJysgQMHKicnR35+furYsaOysrL0zjvvKCUlRSdPnpQkXXfddXVWQ9++fbVu3TqlpaUpMjLystvu3LlTI0eO1KJFi9S2bVu7njc4OFjh4eHKzMzU5s2b1alTpwrrT548qX379slsNqtr16412ue8efMkST179lRMTIxd9RmFr6+vevbsKV9fX2eX4jAnT57UX/7yF+toOpPJpDvuuEPDhg274uv09fVVjx491KNHDx09elSzZ8/WoUOHZLFYtHnzZut2hHcAAAAAAAAAABiP4edOzM3N1V133aWcnBxNmDBB2dnZSkpKUk5OjqZOnaoVK1YoMTFRJpNJXbp0cXa5kqS5c+dqx44diouLU2pqqt37mzJlikwmkyZOnKi5c+fq2LFjys/P16ZNmzR48GDrvfCio6OvuK/i4mIlJCRIkn7729/aXZtRtG7dWrNmzVLr1q2dXYpD5OXlacqUKdbwLigoSK+88opGjRpV65Dy6quv1uTJk9WnT58Ky8PCwgjvAAAAAAAAAAAwIMMHeM8884wyMjI0btw4zZgxQwEBAdZ1kyZN0rXXXquSkhJFRkYqMDDQqbWWmzlzph555BFlZGQoLi5O6enpdu1v5MiR+uKLL9SuXTuNHj1aoaGh8vf3V69evZSVlaVPPvlE06dPr9G+VqxYodzcXHl5eWn48OF21WUkpaWlysvLU2lpqbNLcYh58+YpIyNDktSiRQv9+c9/VmxsrM3727VrV4WRd7o4pWb59JoAAAAAAAAAAMA4DB3g7d27VwsWLFBwcLDeeOONKrfp1q2bJOnaa6+tsDwtLU133323AgIC1KxZM40cOVInTpywu6aMjAylp6df9r8jR47otddeU79+/XTkyBHFxcXpyJEjNj+nxWJRSkqKfv75Z5nNZkVGRqpLly7y9fXV4cOHNXv2bO3du7dG+/rkk08kSXfffbeaNWtmc01Gc/DgQfXr108HDx50dil2+/HHH7Vhwwbp4lSYL7zwgoKDg23eX3JysmbOnGm9592lU8D+85//VH5+vgOqBgAAAAAAAAAAjmLoufMSEhJUVlamESNGyN/fv8ptfHx8pF8FeOfOnVNcXJyCgoKUkJCggoICTZo0SYMHD9amTZtkNtueW/bu3bvWbdLT0/Xwww9r/fr1Nj3n2LFjNXv2bHXv3l2rVq1S+/btJUkFBQV69dVXNX36dN10003atWuXrr766mr3c+LECa1YsUJqZNNnNiYlJSX6v//7P+vjkSNHKjQ01Ob9/Tq8u/HGG/XUU09pxowZ2rFjh06ePKlFixZp1KhRDqkfAAAAAAAAAADYz9AB3po1ayRJcXFx1W5TPs3gpQHenDlzlJmZqfXr11vvidaqVSvdfPPNWrZsme655x6ba+rcubM8PT1rtO2JEyes02faOv3hjh07NGfOHHl4eGjhwoWKiIiwrvPx8dG0adOUlJSk1atXa8qUKfrggw+q3VdCQoKKiooUGhqq22+/3aZ6qtKuXTu7QtGqDB06tFbbHz9+XJL01Vdf6ccff6xxu3vvvbfWtdnD09Oz2tGkkrRt2zadPHlSktSlS5dK962rjarCu/J73j3++OP605/+pKKiIq1du1bDhw+Xt7d3lftp3769ioqKbK6jrt37uz/Izz9Q2TnZatWqVaXHAAAAAAAAAAA4Q2hoqLZt22ZTW0MHeIcPH5akCqHVpUpKSrRp0ybpVwHe8uXL1atXL2t4J0k33XSToqKi9OWXX9oV4C1btqzCFITVycjIsIYvw4cP1/vvv2/T823atEkWi0Xt2rWr9n0YMGCAVq9ercTExMvua968eZKkESNGyM3NzaZ6qpKdne2wfZWr7bSOBQUF1v/Xpm1mZmata7OHl5fXZdd/88031p/vvvtumUwmm57ncuGdJAUHB6tXr15as2aNCgoKtHHjRvXv37/KfWVlZamwsNCmOupD2cX7HpaVliozM7PSYwAAAAAAAAAAGhpDB3jlQUx5OPNrCxYsUG5urgICAtSmTRvr8j179mjYsGGVtu/UqZP27NlThxX/IjMzU3FxcUpNTdXQoUP12Wef2RyYnTt3rsbbXrhwodp1e/bssaa8jp4+MywszOEj8Pz8/Gq1ffm54uPjU6u24eHhta7NHpcbvXny5EnrvQxbtmypTp062fQcVwrvyt12223WUa6bNm2qNsBr2bKloUfgmS9eW2Y3N4WHh1d6DAAAAAAAAACAM9hziyxDB3ihoaE6deqUkpKSdNNNN1VYl52drYkTJ0oXpxq8dKTSqVOn1LRp00r7CwoK0v79++u87smTJ+vQoUO69957lZCQUCk4qY3y+90dPHhQhw8frnIU3qpVqyRJMTEx1e7nk08+kSR17dpV11xzjc31VOXgwYO1Dtyu5EqjCX+tpKREv/3tbxUQEFCr9/vvf/+7DdXZrqSkRIsXL65yXWpqqvXnbt262TT6rqbhnSS1adNGzZs314kTJ5SWlqaysrIqg9gDBw7YdQ7XtSnvzdfZvHyFhYYpIyOj0mMAAAAAAAAAABoaxw6bcrDyEUFTp07VgQMHrMsTExMVFxen3NxcSdJ1111X57X06dNH8fHxNQqq3n77bU2ePFkLFiywO/gYMGCAWrRooeLiYg0bNqzC+1BQUKBJkyZp9erVkqSRI0dWuY+ysjJ99tlnkqRRo0bZVY9Rubu7q1mzZoYOmq4kLS3N+nN0dHSt29cmvCsXFRUlXRy9WRdToQIAAAAAAAAAgNozdIA3adIkNW/eXEePHlWnTp3UuXNntWvXTj169FBUVJT69esn/er+d5LUrFkznT59utL+Tp48qaCgIJtqmTx5shYtWqSQkJArbuvj46NXXnlFHh4eNj3Xpfz8/DR//nz5+fkpMTFRsbGxioqK0rXXXqvg4GBNnz5dkvTUU09pyJAhVe7ju+++U2Zmpjw8PPTQQw/ZXZMRZWRkaMKECQ16xNWl92u79P6NNWFLeCepwv0cuV8cAAAAAAAAAADGYOgAr1WrVtqwYYPuvPNOeXt7Kz09XUFBQZo9e7ZWrFhhHY326wAvNja2ynvd7dmzR7GxsfVWv6P0799fO3fu1Lhx49S+fXvl5ORo7969atKkiYYMGaLly5fr3Xffrbb9vHnzJEl33nmngoOD67Hy+pOXl6cNGzYoLy/P2aXYzN/fX8HBwQoMDJS/v3+N2+3cudOm8E6SmjRpoqZNm6pFixY236cRAAAAAAAAAAA4luHnG4yNjdXy5csrLc/Ly1N6errMZnOle7oNHjxYL7zwgjIyMtSqVStJ0pYtW5SSkmIdsdbQREVFadasWTa1nT9/vubPn+/wmuBYjz32mE3tWrRooYCAAJ08ebJW4Z0uhsPlU9UCAAAAAAAAAABjMPQIvMvZvXu3LBaL2rVrJ19f3wrrnnjiCYWFhVlHpy1atEgPPvigevToUe00k0BDFRoaqldeeUW33357rcI7AAAAAAAAAABgTA02wNu1a5dUxfSZkhQYGKg1a9YoLCxMDzzwgB577DHdfPPNWr58uczmBvuSgWqFhobqd7/7HeEdAAAAAAAAAACNQIP9tv9yAZ4kRUdHVzn1JhqnkJAQjR8/XiEhIc4uBQAAAAAAAAAAwC6NNsCDa2nevLlGjBjh7DIAAAAAAAAAAADs1mADvDVr1ji7BBjI2bNntXXrVvXo0UOBgYHOLgcAAAAAAAAAAMBm3BAOjUJWVpZeeOEFZWVlObsUAAAAAAAAAAAAuxDgAQAAAAAAAAAAAAZCgAcAAAAAAAAAAAAYCAEeAAAAAAAAAAAAYCAEeGgUvLy8FBMTIy8vL2eXAgAAAAAAAAAAYBd3ZxcAOEKbNm306aefOrsMAAAAAAAAAAAAuzECDwAAAAAAAAAAADAQAjw0Cvv379ctt9yi/fv3O7sUAAAAAAAAAAAAuxDgoVGwWCwqLi6WxWJxdikAAAAAAAAAAAB2IcADAAAAAAAAAAAADMTd2QUArsTNzU3x8fEO29/02Qt0Lj9fAX5+mvj74ZUeO4Kbm5tD9gMAAAAAAAAAAGqGAA+oRyaTSe7ujrvsLJLKLL/8393dvdJjAAAAAAAAAADQ8PANPxqFyMhIJSQkKDw83NmlAAAAAAAAAAAA2IUAD42Ct7e3oqOjnV0GAAAAAAAAAACA3czOLgBwhOzsbL3++uvKzs52dikAAAAAAAAAAAB2IcBDo3DmzBktW7ZMZ86ccXYpAAAAAAAAAAAAdiHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI8AAAAAAAAAAAAwEAI8NAoBAUFadSoUQoKCnJ2KQAAAAAAAAAAAHYhwEOjYDab5eHhIbOZUxoAAAAAAAAAADRspB1oFHJzc/Xhhx8qNzfX2aUAAAAAAAAAAADYhQAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAQ6MQEBCgO+64QwEBAc4uBQAAAAAAAAAAwC7uzi4AcITw8HD9+c9/dnYZAAAAAAAAAAAAdmMEHhqFwsJCHT16VIWFhc4uBQAAAAAAAAAAwC4EeGgU0tLSFB8fr7S0NGeXAgAAAAAAAAAAYBem0ASAemSxWFRaWursMmrFzc1NJpPJ2WUAAAAAAAAAgMsgwAOAelRaWqrFixc7u4xaiY+Pl7s7/1wAAAAAAAAAQH1hCk0AAAAAAAAAAADAQAjwAAAAAAAAAAAAAANhTjQ0Ch06dNDWrVudXQYAAAAAAAAAAIDdGIEHAAAAAAAAAAAAGAgBHhqFw4cPa/To0Tp8+LCzSwEAAAAAAAAAALALAR4ahYKCAv30008qKChwdikAAAAAAAAAAAB2IcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjw0CiEhYVp8uTJCgsLc3YpAAAAAAAAAAAAdiHAayByc3P17LPPqnPnzvLz85OXl5ciIiL0yCOPKCkpyeHtGpomTZpo4MCBatKkibNLARqc3NxcWSwWZ5cBAAAAAAAAALjI3dkF4Mr279+vvn37KicnR2azWW3atJG/v79SUlL02WefKSEhQfPmzdOIESMc0q4hOnXqlL777jv1799fzZo1c3Y5QJ07ceKEUlJSlJKSoqNHj6qgoEAWi0VeXl5q2bKloqKiFB0drbCwMJlMpmr3k56ertdff10333yzfve73112WwAAAAAAAABA/SDAawDGjh2rnJwcxcTEaOnSperQoYMkKT8/X3/60580Z84cjRkzRgMHDlRQUJDd7RqiY8eOafr06ercuTMBHhqt0tJSJSUladWqVdq1a1e12+3YscP6c1RUlG677TbdfPPN8vLyqrBdeXiXl5enVatWKTQ0VIMGDarT1wAAAAAAAAAAuDKm0DS4c+fOae3atZKk6dOnW0M4SfLz89N7772n4OBg5eXlaf369Xa3A2BM+/bt04QJEzRz5szLhne/lpqaqtmzZ2vcuHHavHmzdarMS8M7SWrfvr369u1bZ/UDAAAAAAAAAGquwYzAy83N1bRp07RkyRJlZGQoJCRE9913n6ZMmaJnnnlGH330kWbNmqVx48Y5u1RJksVicchUdIWFhdYv3KOioiqtd3d3V0REhHJzc1VcXGx3OwDGUlRUpISEBH399dcV7lPXokUL3XzzzYqOjlabNm0UGBgok8mk/Px8HT58WKmpqUpMTFRqaqp0MdR/55139MMPP+j222/XW2+9VSG8e+655+Tr6+u01wkAAAAAAAAA+J8GEeAlJydr4MCBysnJkZ+fnzp27KisrCy98847SklJ0cmTJyVJ1113XZ3V0LdvX61bt05paWmKjIy87LY7d+7UyJEjtWjRIrVt29au5w0ODlZ4eLgyMzO1efNmderUqcL6kydPat++fTKbzeratavd7QAYR0FBgWbMmKHdu3dbl7Vr107x8fHq0qWLzObKg6ibNm2qpk2b6tprr9W9996rlJQULV26VImJiZKkrVu3KjEx0RoGEt4BAAAAAAAAgPEYfgrN3Nxc3XXXXcrJydGECROUnZ2tpKQk5eTkaOrUqVqxYoUSExNlMpnUpUsXZ5crSZo7d6527NihuLg46+gXe0yZMkUmk0kTJ07U3LlzdezYMeXn52vTpk0aPHiw9Z520dHRDmnXEPn6+qpnz56EEGg0ioqKNG3aNGt45+HhoYcffliTJ0/WddddV2V4V5Xo6GhNmDBBf/jDH6zXx6WjcwnvAAAAAAAAAMB4DD8C75lnnlFGRobGjRunGTNmVFg3adIk/etf/9KOHTusU8gZwcyZM3XixAl9+umniouL07p16644au9yRo4cqSZNmuj111/X6NGjK6yLiIjQJ598okceecRh7Rqi1q1ba9asWc4uA3CYjz76SHv37pUu3rfy+eeft2tEb2hoaJXLvby8bN4nAAAAAAAAAKBuGHoE3t69e7VgwQIFBwfrjTfeqHKbbt26SZKuvfZa67JFixYpPj5eERER8vX1VYcOHfTiiy9a7/dkj4yMDKWnp1/2vyNHjui1115Tv379dOTIEcXFxenIkSM2P6fFYlFKSop+/vlnmc1mRUZGqkuXLvL19dXhw4c1e/Zs6xf9jmjXEJWWliovL0+lpaXOLgWw2/bt27V27VpJkre3t1544QW7wrv09HS9/vrrOn/+vHTxHpiSlJqaqhUrVjioagAAAAAAAACAoxg6wEtISFBZWZlGjBghf3//Krfx8fGRfhXgzZgxQ25ubpoyZYq++uorjR07Vh988IHuuOMOlZWV2VVT79691aZNmyv+Fx0drTVr1kgXvzx/+OGHbX7OsWPHasKECWrRooX27t2rtLQ07dixQ7m5uZo4caI2bdqkm266SUePHnVIu4bo4MGD6tevnw4ePOjsUgC7FBQU6J///Kf18ciRI+2a5rY8vCv/A4b27dtr4sSJMplMkqSFCxcqKyvLAZUDAAAAAAAAABzF0FNolgdgcXFx1W6TkZEh/SrA+/LLLxUSEmJ93KdPH4WEhGjEiBHauHGjbr31Vptr6ty5szw9PWu07YkTJ5Seni5Jio2Nten5duzYoTlz5sjDw0MLFy5URESEdZ2Pj4+mTZumpKQkrV69WlOmTNEHH3xgVztbtGvXrsb346qpoUOH1mr748ePS5K++uor/fjjjzVud++999a6NiO593d/kJ9/oLJzstWqVatKj11BQ3sPPD09qx1RLEkbNmzQyZMnJUldunS5bP93JVWFd+X3vBs0aJBWrFih4uJirVy5Uo899li1+2nfvr2KiopsrgMAAAAAAAAAXFFoaKi2bdtmU1tDB3iHDx+WLt6vrSolJSXatGmT9KsA79LwrtwNN9wgScrMzLSrpmXLltXofnYZGRnq06ePJGn48OF6//33bXq+TZs2yWKxqF27dtW+DwMGDNDq1auVmJhodztbZGdn29W+Kvn5+bXavqCgwPr/2rS193xwtrKLU4aWlZYqMzOz0mNX0NDeg8vdc85isWjVqlXWxyNGjLCOlKuty4V3khQfH6/vvvtOhYWF2rBhgx566CHrul/LyspSYWGhTXUAAAAAAAAAAGrP0AFeeRBTHs782oIFC5Sbm6uAgAC1adPmsvv6/vvvJTtGwtVGZmam4uLilJqaqqFDh+qzzz6Tm5ubTfs6d+5cjbe9cOGC3e1sERYW5vAReH5+frXavvxc8fHxqVXb8PDwWtdmJOaL55XZzU3h4eGVHruChvYeXG4E74EDB6yjimNiYqoN36/kSuGdJPn6+qp3797WEG/z5s3q379/lftr2bIlI/AAAAAAAAAAoJZCQ0NtbmvoAC80NFSnTp1SUlKSbrrppgrrsrOzNXHiROniNHOXG6WSmZmpl19+WXfccYeuu+66Oq978uTJOnTokO69914lJCTI3d32t7l9+/bSxXu8HT58uMov9MtH7MTExNjdzhYHDx6sdeB2JbUdFbhv3z4lJCRo4MCB6tChQ43b/f3vf7ehOuOY8t58nc3LV1homDIyMio9dgUN7T0oKSnR4sWLq1y3b98+68/lI3hrqybh3aXP8d1331mfu7oA78CBA3b1YwAAAAAAAACA2nHssCkHK/8yeerUqTpw4IB1eWJiouLi4pSbmytJlw3l8vLyNGTIEHl6euqjjz6yuZY+ffooPj6+RkHV22+/rcmTJ2vBggV2f+k9YMAAtWjRQsXFxRo2bFiF96GgoECTJk3S6tWrJUkjR460u11D1bZtW33zzTdq27ats0sBbJaWlmb9uV27drVuX5vwTpLatGlj7aNSU1NtrhsAAAAAAAAA4FiGHlIxadIk/etf/9LRo0fVqVMndejQQRcuXNChQ4c0cOBARUZG6ptvvqlw/7tLFRQU6K677lJaWpo2bNigsLAwm2uZPHlyjbf18fHRK6+8YvNzXcrPz0/z58/XPffco8TERMXGxioiIkIBAQE6dOiQzp8/L0l66qmnNGTIELvbNVTu7u5q1qyZs8sA7JKeni5dnGazZcuWtW5bm/BOF6+b1q1bKzU1VdnZ2SosLLzsPfoAAAAAAAAAAPXD0CPwWrVqpQ0bNujOO++Ut7e30tPTFRQUpNmzZ2vFihXWUWVVBXjFxcUaOnSotm3bpq+++kodO3Z0witwjP79+2vnzp0aN26c2rdvr5ycHO3du1dNmjTRkCFDtHz5cr377rsOa9cQZWRkaMKECYacMhGoqfLwLSgoqFb3zbQlvCvXvHlzSZLFYrHeSxIAAAAAAAAA4FyGHoEnSbGxsVq+fHml5Xl5eUpPT5fZbNY111xTYV1ZWZlGjBih1atXa+XKlerRo0c9Vlw3oqKiNGvWrHpr19Dk5eVpw4YNevzxx51dCmCziRMnqrCwsFbhnSR9//33NoV3knTvvfeqf//+8vT0VEBAgE11AwAAAAAAAAAcy/ABXnV2794ti8Wi9u3bV/qi+qmnntLChQutX2L/8MMP1nXR0dEKCQlxQsUAcHkxMTE2tRs1apTy8/N1/PjxWoV3uhjyAwAAAAAAAACMpcEGeLt27ZKqmT7zq6++kiS9+eabevPNNyusmzt3rn7729/WU5UAUPfMZrOefPJJFRUVydvb29nlAAAAAAAAAADs1CgDvPT0dCdUBADOYzabCe8AAAAAAAAAoJEwO7sAW10uwIPrCQkJ0fjx45keFQAAAAAAAAAANHgNdgTemjVrnF0CDKR58+YaMWKEs8sAAAAAAAAAAACwW4MdgQdc6uzZs/ruu+909uxZZ5cCAAAAAAAAAABgFwI8NApZWVl64YUXlJWV5exSAAAAAAAAAAAA7EKABwAAAAAAAAAAABgIAR4AAAAAAAAAAABgIAR4AAAAAAAAAAAAgIEQ4KFR8PLyUkxMjLy8vJxdCgAAAAAAAAAAgF3cnV0A4Aht2rTRp59+6uwyAAAAAAAAAAAA7MYIPAAAAAAAAAAAAMBACPDQKOzfv1+33HKL9u/f7+xSAAAAAAAAAAAA7EKAh0bBYrGouLhYFovF2aUAAAAAAAAAAADYhXvgAUA9cnNzU3x8vMP2N332Ap3Lz1eAn58m/n54pceO4Obm5pD9AAAAAAAAAABqhgAPAOqRyWSSu7vjul6LpDLLL/93d3ev9BgAAAAAAAAA0PAwhSYAAAAAAAAAAABgIAzPQKMQGRmphIQEhYeHO7sUAAAAAAAAAAAAuxDgoVHw9vZWdHS0s8sAAAAAAAAAAACwG1NoolHIzs7W66+/ruzsbGeXAgAAAAAAAAAAYBcCPDQKZ86c0bJly3TmzBlnlwIAAAAAAAAAAGAXAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMxN3ZBQBV6d69e622b9WqlV599VX1799fYWFhdVYXAAAAAAAAAABAXSPAQ6MQFham1157zdllAAAAAAAAAAAA2I0pNAEAAAAAAAAAAAADIcADAAAAAAAAAAAADIQADwAAAAAAAAAAADAQAjwAAAAAAAAAAADAQAjwAAAAAAAAAAAAAAMhwAMAAAAAAAAAAAAMhAAPAAAAAAAAAAAAMBACPAAAAAAAAAAAAMBACPAAAAAAAAAAAAAAAyHAAwAAAAAAAAAAAAyEAA8AAAAAAAAAAAAwEAI81KlPP/1U3bp1U7NmzeTj46PY2Fj97W9/k8VicXZpqMbKlSt13XXXycvLS5GRkfrb3/7m7JLq1fr16zVkyBBFRETIZDLp9ddfd3ZJ9Wr69Om66aab1KxZMzVt2lS9evXS119/7eyyAAAAAAAAAMCluDu7ADRuLVq00Msvv6yYmBh5eXlpw4YNevLJJ+Xm5qbx48c7uzz8yrZt2zRkyBD9v//3/5SQkKAtW7ZozJgx8vX11ZgxY5xdXr3Iy8tTx44d9dBDD+kPf/iDs8upd2vWrNHo0aPVvXt3+fr66sMPP9TgwYO1bt063XLLLc4uDwAAAAAAAABcAgEe6tTtt99e4XFUVJSWLl2qtWvXEuAZ0N/+9jd1795db7zxhiQpNjZWu3fv1ptvvukyAd6gQYM0aNAgSdKzzz7r7HLq3VdffVXh8bRp0/T1119ryZIlBHgAAAAAAAAAUE+YQhP1xmKxaOvWrdq0aZPi4uKcXQ6qsGnTJt1xxx0Vlt1xxx06fPiwMjIynFYXnKesrExnz56Vn5+fs0sBAAAAAAAAAJfBCDzUuTNnzig8PFxFRUUqKyvTq6++qmeeecbZZTUoFotFKYezVPareweWlJZa/38gLaPS40s18ffVVSFBl32e7OxshYaGVlhW/jg7O1utWrVyyOuxxfETp3X6bF6l5TV9D0wmKToiXGaTqR6rdpwLhUU6knW80vLanAOhwc0UGFC7IG7KlCk6ffq0nnjiCbvqBwAAAAAAAADUHAEe6lxAQICSk5N1/vx5bd68Wc8//7xatmypRx991NmlNRgmk0mpR7O1ZnNSlevPF1zQR/9eWe1jN7NZT428p15qrSsWi0WfLP7GGlD92pXeg1t7dFG7SOcFkPby9PTQ2h+SlXokq8r1V3r9zZoEaPzv4mv1nO+//76mTJmiZcuWOTW8BQAAAAAAAABXwxSaqHNms1lt27ZVly5dNGbMGE2aNEkvvviis8tqcH5zc1eFhwbb1Pa23jeo5VVXbhsWFqacnJwKy44dO2Zd50xXBTfTHX172NQ2NCRIA3p3d3hN9clsMun+O/vKy9Oj1m1Nku6/s6+8vTxr3GbGjBmaOHGili1bpv79+9f6OQEAAAAAAAAAtiPAQ70rKyvThQsXnF1Gg+PmZtbwO+Pk7u5Wq3YR4Vfp1h5darTtLbfcom+++abCsq+//loRERGGGIF1c7dr1DYivFZt3NzMGj649u+bETUN9Nc9A3rVut2tPa9Vm6trHsC+8sormjx5slauXEl4BwAAAAAAAABOQICHOvXqq6/qu+++U2pqqvbv369//vOfmjp1qkaNGuXs0hqkFsHNNLBPzxpv7+npofsHx8lsrtml/sc//lFbt27Viy++qH379mnevHmaNWuWnnvuOTuqdhyzyaShg/rUaiTZgN43KKxF8xpvn5eXp+TkZCUnJ6uoqEg5OTlKTk7WoUOHbKzasa7r2FadY9rUePvQkCDd1uuGGm//hz/8QdOnT9enn36qmJgY5eTkKCcnR2fOnLGxYgAAAAAAAABAbZksFovF2UWg4cnPz5e/v790MfDw8/Orcrs//vGP+vLLL5WZmSlvb29FRUVp9OjRGjNmjNzcGv6IKGcos1j00YKVOnQ484rbxt9xq7pf26FW+1+xYoVeeOEF7du3T6GhoRo/frz+9Kc/2VGx423ffVALln9/xe0iW4XqiQcH1zjAlKS1a9cqLi6u0vI+ffpo7dq1ta61LuQXXNDfP1qkc3nnL7udm5tZT4+6T6EhQTXet8lkqnL5qFGj9PHHH9e6VgAAAAAAAABA7RHgwSY1DfBQN86czdNbHy3ShcKiareJbdtaI++7vdpApiGzWCxKWLZaO/elVruNp6eH/vC7eAU1DazX2urL/pQjmrvo68tuM6hvT93a89p6qwkAAAAAAAAA4BhMoQlDKCoqVnpGjrPLaDCaXOFeaH6+3rrvjlsbZXini6PE7hnQSwH+vtVuc/dvbm604Z0kxUS31o3Xd6x2fZurw9Sre+d6rQkAAAAAAAAA4BgEeDCEH7bv0T/mL9Pir9Y7u5QG47qObdWlQ1SV6+6741YF+FUfbjUGvj7eGjawT5XrOraLULfO7eu9pvo2qG9PBTdrUmm5l6eHht3Zt1ZThwIAAAAAAAAAjINvd6/AZDJZRzF9+eWX6t27twIDAxUcHKyhQ4cqJSXFuu3y5cvVp08fNW3aVIGBgRoyZIgOHjxY7b4LCwv19ttv6+abb1bTpk3l7e2tmJgYTZw4Ubm5uVW22bJli5599ll1795doaGh8vLyUnh4uO6//34lJiZW+1wrV67UoEGD1KJFC3l4eKh58+aKjY3V6NGjtWnTJrveI3sVFRVr3dYdkqSIVlc5tZaG5p4BvRT4q1FoN3SOUad2kU6rqT61j7q60ig0f18f3Xd74x19eClPTw/dPzhO5l+91rv636ygJgFOqwsAAAAAAAAAYB/ugXcF5SHAu+++q3Hjxqlly5a66qqrtG/fPhUUFCg8PFzbt2/X/Pnz9cc//lFhYWEKDQ21rg8NDdXOnTsVEhJSYb/Hjh3TwIEDtX37dpnNZl199dUKDAzUgQMHVFhYqNatW+v7779XVFTFEVZt27ZVSkqKgoKCFBYWJk9PTx05ckQnTpyQu7u7Pv/8c8XHx1do8/777+upp56SJDVv3lwREREqKCjQ0aNHlZeXp9///vf6xz/+Uav3xZH3wFu/ZYdWrt2i5k0D9afH75cbo4Zq5UBahj7690pJUrMmARr/u3h5e3k6u6x6U1RUrHfmLVHuyTOSpJHxt6tj2whnl1WvVm3YpjWbkyRJndpH6uF7bnOJABMAAAAAAAAAGiuSkhqaNGmS5s2bp8zMTCUlJSkjI0Pdu3dXZmamRo8erRdeeEHz5s1TVlaWkpKSdPToUXXr1k05OTmaOXNmhX1ZLBYNHz5c27dv15133qmUlBSlp6dr586dys3N1ejRo3XkyBE9/PDDlep45ZVXdPDgQZ04cUI//fSTkpKSdPz4cS1ZskTe3t567LHHlJeXZ92+pKREL730knQxyDt27Jh+/PFH7dmzR2fPntW6det0++2318M7WLVLR9/F3Xw94Z0N2rdppZu6dpJJ0v139nWp8E4XR6ENv/OXUWjdu3RwufBOkn5zc1eFhwbL389H997em/AOAAAAAAAAABo4RuBdQfkX4U8//bTeeeedCuu+/vprDRw4sNr1X331lQYNGqQuXbpox44d1uUrV67UnXfeqWuuuUaJiYny9vau0K60tFQ9evRQUlKSNm7cqFtuuaVGtb788st6/fXXlZCQoAceeECSlJOTo7CwMDVr1kwnT5608V2o7NIReK/O/FCeXt5XbFOVoqIiXSgqltlkkr+fjySCB1tYLBYVl5TI08PD2aU4TVFxsTzc3V02vCotK1NZWZk83N2dXQoAAAAAAAAAQFKAv4+eHnWfTW35preGHnvssUrLunbtWqP1qampFZYvXrxYkjRq1KhK4Z0kubm56e6771ZSUpLWrl1bKcA7ePCgPv/8c+3YsUMnTpxQcXGxJOn48eOSpOTkZGuAFxISIm9vb50+fVrffvutbrvtNpte/+WczT8vz+JSu/ZRZrHobN55h9Xkqi4UFjm7BKdy9dcvSQUqdHYJAAAAAAAAAAA7EeDVUHR0dKVll97Xrqr1LVq0kC7eI+5SO3fulCTNnTtXS5curfL5jh07JknKzMyssHzmzJl67rnnVFJSUm2tJ06csP7s5uam8ePHa+rUqRowYIC6du2q/v37q1evXurTp48CAwOr3U9NBfr52jQCj9F3AAAAAAAAAACgsQrw97G5LQFeDfn5+VVadulUfVdaf6nTp09Lkvbs2XPF5z1//n+j0jZt2qT/9//+n9zc3PT6669ryJAhioyMlJ+fn0wmkz766CM9+uij1hF55aZMmaJWrVrpvffeU1JSkpKSkjRt2jR5eXnpoYce0owZMxQUFHTFWqoz8fcPVPn6L6eoqFhTZydIRcW6b+CtuqFzjM3PDwAAAAAAAAAA0JgQ4DlB+b3jli1bprvuuqvG7T799FNJ0oQJE/Tiiy9WWn/pyLtLmc1mjRs3TuPGjVNGRoY2bNigb7/9Vv/+9781d+5cHT16VN9++22tXoOvr6+mz56vvLwC/X3uF7W+79ilo+9WrU/UqvXbatUeAAAAAAAAAADAyLgHXgPTqVMnJScn66effqpVgJeWliZJ6tWrV5Xrf/jhhyvuo1WrVnrwwQf14IMPasKECercubO+++47paWlqU2bNjWuxWQyqajYogvFpbpQbPu967j3HQAAAAAAAAAAQEUEeE4wdOhQzZ8/X3PmzNHTTz9tHZF3JT4+v8yVmpOTU2ndwYMHtXz58lrV0alTJzVp0kSnT59WVlZWrQI82TF3K/e+AwAAAAAAAAAAjR33wGtghgwZoj59+mjdunUaMGCA5syZo2uuuca6vqysTFu2bNG8efM0adIkRUVFSZJ69+6t//znP3rjjTfUr18/RUdHS5J2796t+Ph4mc3mSs+1Z88evfXWW3r00UfVs2dP61SXpaWlmjVrlk6fPi1vb2916tSp1q/DlmGf3PsOAAAAAAAAAADg8kwWi8Xi7CKMrDzwqu5tsnV9bm6uhgwZos2bN0uSIiIiFBoaqoKCAqWkpCg/P1+StHfvXnXo0EGSdO7cOXXt2lWHDh2Sh4eHYmJiVFZWpr179yosLExPPvmkXnrpJY0aNUoff/yxJCk5OVnXX3+9JCkgIEDR0dFyc3NT+v9v745VnAzCMIx+IGiaFRfThLQhva2dRS4hpg9ISBXwYlKlyCVYWVj5m21WQiDlNsnWYqG4AY2N3Tau2Ej2Bc/phxmmffhmrq9v/8ybz+c1nU7/wW393YfLbb19f1lPnzyu169e1oM7oiMAAAAAAMD/TD25J+12u5qmqeVyWYPBoA6HQ63X69rv99Xr9Wo2m1XTNNXv92/XnJ2d1cXFRY3H4zo/P6+rq6u6ubmpyWRSm82mut3ub/v0+/1aLBY1Go2q0+nUbrer7XZbrVarhsNhrVark8W74/FnNR+3VVX14vkz8Q4AAAAAAOAOJvA4ma/fDvXm3ao+ff5i+g4AAAAAAOAPBDxO7vuPY7UePbzvYwAAAAAAAEQS8AAAAAAAACCINwwBAAAAAAAgiIAHAAAAAAAAQQQ8AAAAAAAACCLgAQAAAAAAQBABDwAAAAAAAIIIeAAAAAAAABBEwAMAAAAAAIAgAh4AAAAAAAAEEfAAAAAAAAAgiIAHAAAAAAAAQQQ8AAAAAAAACCLgAQAAAAAAQBABDwAAAAAAAIIIeAAAAAAAABBEwAMAAAAAAIAgAh4AAAAAAAAEEfAAAAAAAAAgiIAHAAAAAAAAQQQ8AAAAAAAACCLgAQAAAAAAQBABDwAAAAAAAIIIeAAAAAAAABBEwAMAAAAAAIAgAh4AAAAAAAAEEfAAAAAAAAAgiIAHAAAAAAAAQQQ8AAAAAAAACCLgAQAAAAAAQBABDwAAAAAAAIIIeAAAAAAAABBEwAMAAAAAAIAgAh4AAAAAAAAEEfAAAAAAAAAgiIAHAAAAAAAAQQQ8AAAAAAAACCLgAQAAAAAAQBABDwAAAAAAAIIIeAAAAAAAABBEwAMAAAAAAIAgvwAk6z1Wa1zCbwAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 2281.26x1622.06 with 1 Axes>"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n",
|
||
"\n",
|
||
"# Specify the QPU to target\n",
|
||
"backend = FakeSherbrooke()\n",
|
||
"\n",
|
||
"# Transpile the circuit\n",
|
||
"pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend)\n",
|
||
"transpiled_circ = pass_manager.run(qc)\n",
|
||
"\n",
|
||
"# View the transpiled circuit\n",
|
||
"transpiled_circ.draw(output='mpl', idle_wires=False)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6c0e9d2d-511e-4948-9f48-3b7b0fe56d7a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## All available parameters\n",
|
||
"\n",
|
||
"Following are all of the available parameters for the [`generate_preset_pass_manager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.generate_preset_pass_manager) function. There are two classes of arguments: those that describe the target of compilation, and those that influence how the transpiler works.\n",
|
||
"\n",
|
||
"\n",
|
||
"All parameters except `optimization_level` are optional. For full details, see the [Transpiler API documentation](/api/qiskit/transpiler#transpiler-api).\n",
|
||
"\n",
|
||
"- `optimization_level` (int) - How much optimization to perform on the circuits. Integer in the range (0 - 3). Higher levels generate more optimized circuits, at the expense of longer transpilation time. See [Set transpiler optimization level](set-optimization) for more details.\n",
|
||
"\n",
|
||
"### Parameters used to describe the compilation target:\n",
|
||
"\n",
|
||
"These arguments describe the target QPU for circuit execution, including information such as the coupling map of the QPU (which describes the connectivity of the qubits), the basis gates supported by the QPU, and the error rates of the gates.\n",
|
||
"\n",
|
||
"Many of these parameters are described in detail in [Commonly used parameters for transpilation](common-parameters).\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **QPU (`Backend`) parameters**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"**Backend parameters** - If you specify `backend`, you don't need to specify `target` or any other backend options. Likewise, if you specify `target`, you don't need to specify `backend` or any other backend options.\n",
|
||
"- `backend` (Backend) - If this is set, the transpiler compiles the input circuit to this device. If any other option is set that impacts these settings, such as `coupling_map`, it overrides the settings from `backend`.\n",
|
||
"- `target` (Target) - A backend transpiler target. Normally this is specified as part of the backend argument, but if you manually constructed a Target object, you can specify it here. This overrides the target from `backend`.\n",
|
||
"- `backend_properties` (BackendProperties) - Properties returned by a QPU, including information on gate errors, readout errors, qubit coherence times, and so on. Find a QPU that provides this information by running `backend.properties()`.\n",
|
||
"- `instruction_durations` (List[Tuple[str, Iterable[int], float, Iterable[float], str]] | List[Tuple[str, Iterable[int], float, Iterable[float]]] | List[Tuple[str, Iterable[int], float, str]] | List[Tuple[str, Iterable[int], float]] | InstructionDurations) - Durations of instructions. Applicable only if `scheduling_method` is specified. The gate lengths defined in `backend.properties` are used by default. They are overwritten if `instruction_durations` is specified. The `instruction_durations` format must be as follows. The instruction_durations must be given as a list of tuples [(instruction_name, qubits, duration, unit), …]. | [(`cx`, [0, 1], 12.3, `ns`), (`u3`, [0], 4.56, `ns`)] | [(`cx`, [0, 1], 1000), (`u3`, [0], 300)]. If `unit` is omitted, the default is `dt`, which is a sample time depending on the QPU. If the time unit is `dt`, the duration must be an integer.\n",
|
||
"- `timing_constraints` (Dict[str, int] | None) - An optional control hardware restriction on instruction time resolution. This information is provided by the QPU configuration. If the QPU doesn’t have any restriction on the instruction time allocation, `timing_constraints` is `None` and no adjustment is performed. A QPU might report a set of restrictions, namely:\n",
|
||
" - `granularity`: An integer value representing the minimum pulse gate resolution in units of dt. A user-defined pulse gate should have a duration that is a multiple of this granularity value.\n",
|
||
" - `min_length`: An integer value representing the minimum pulse gate length in units of dt. A user-defined pulse gate should be longer than this length.\n",
|
||
" - `pulse_alignment`: An integer value representing a time resolution of gate instruction starting time. Gate instructions should start at a time that is a multiple of this value.\n",
|
||
" - `acquire_alignment`: An integer value representing a time resolution of measure instruction starting time. Measure instruction should start at a time that is a multiple of this value.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Layout and topology parameters**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `basis_gates` (List[str] | None) - List of basis gate names to unroll to. For example ['u1', 'u2', 'u3', 'cx']. If `None`, do not unroll.\n",
|
||
"- `coupling_map` (CouplingMap | List[List[int]]) - Directed coupling map (possibly custom) to target in mapping. If the coupling map is symmetric, both directions need to be specified. These formats are supported:\n",
|
||
" - CouplingMap instance\n",
|
||
" - List - must be given as an adjacency matrix, where each entry specifies all directed two-qubit interactions supported by the QPU. For example: [[0, 1], [0, 3], [1, 2], [1, 5], [2, 5], [4, 1], [5, 3]]\n",
|
||
"- `inst_map` (List[InstructionScheduleMap] | None) - Mapping of circuit operations to pulse schedules. If `None`, the QPU's `instruction_schedule_map` is used.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"\n",
|
||
"### Parameters used to influence how the transpiler works\n",
|
||
"\n",
|
||
"These parameters impact specific transpilation stages. Some of them might impact multiple stages, but have only been listed under one stage for simplicity. If you specify an argument, such as `initial_layout` for the qubits you want to use, that value overrides all the passes that could change it. In other words, the transpiler won't change anything that you manually specify. For details about specific stages, see [Transpiler stages](transpiler-stages).\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Initialization stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `hls_config` (HLSConfig) - An optional configuration class `HLSConfig` that is passed directly to the `HighLevelSynthesis` transformation pass. This configuration class lets you specify the lists of synthesis algorithms and their parameters for various high-level objects.\n",
|
||
"- `init_method` (str) - The plugin name to use for the initialization stage. By default, an external plugin is not used. You can see a list of installed plugins by running `list_stage_plugins()` with `init` for the stage name argument.\n",
|
||
"- `unitary_synthesis_method` (str) - The name of the unitary synthesis method to use. By default, `default` is used. You can see a list of installed plugins by running `unitary_synthesis_plugin_names()`.\n",
|
||
"- `unitary_synthesis_plugin_config` (dict) - An optional configuration dictionary that is passed directly to the unitary synthesis plugin. By default this setting has no effect because the default unitary synthesis method does not take custom configuration. Applying a custom configuration should only be necessary when a unitary synthesis plugin is specified with the `unitary_synthesis` argument. As this is custom for each unitary synthesis plugin, refer to the plugin's documentation for how to use this option.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Layout stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `initial_layout` (Layout | Dict | List) - Initial position of virtual qubits on physical qubits. If this layout makes the circuit compatible with the `coupling_map` constraints, it will be used. The final layout is not guaranteed to be the same, as the transpiler might permute qubits through swaps or other means. For full details, see the [Initial layout section.](common-parameters#initial-layout)\n",
|
||
"- `layout_method` (str) - Name of layout selection pass (`trivial`, `dense`, `noise_adaptive`, or `sabre`). This can also be the external plugin name to use for the layout stage. You can see a list of installed plugins by running `list_stage_plugins()` with `layout` for the `stage_name` argument. The default value is `sabre`.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Routing stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `routing_method` (str) - Name of routing pass (`basic`, `lookahead`, `stochastic`, `sabre`, or `none`). This can also be the external plugin name to use for the routing stage. You can see a list of installed plugins by running `list_stage_plugins()` with `routing` for the `stage_name` argument. The default value is `sabre`.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Translation stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `translation_method` (str) - Name of translation pass (`translator` or `synthesis`) This can also be the external plugin name to use for the translation stage. You can see a list of installed plugins by running `list_stage_plugins()` with `translation` for the `stage_name` argument. The default value is `translator`.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Optimization stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `approximation_degree` (float, in the range 0-1 | None) - Heuristic dial used for circuit approximation (1.0 = no approximation, 0.0 = maximal approximation). The default value is 1.0. Specifying `None` sets the approximation degree to the reported error rate. See the [Approximation degree section](common-parameters#approx-degree) for more details.\n",
|
||
"- `optimization_method` (str) - The plugin name to use for the optimization stage. By default an external plugin is not used. You can see a list of installed plugins by running `list_stage_plugins()` with `optimization` for the `stage_name` argument.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Scheduling stage**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `scheduling_method` (str) - Name of the scheduling pass. This can also be the external plugin name to use for the scheduling stage. You can see a list of installed plugins by running `list_stage_plugins()` with `scheduling` for the `stage_name` argument.\n",
|
||
" * 'as_soon_as_possible': Schedule instructions greedily, as early as possible on a qubit resource (alias: `asap`).\n",
|
||
" * 'as_late_as_possible': Schedule instructions late, that is, keeping qubits in the ground state when possible (alias: `alap`). This is the default.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"<details>\n",
|
||
" <summary>\n",
|
||
" **Transpiler execution**\n",
|
||
" </summary>\n",
|
||
"\n",
|
||
"- `seed_transpiler` (int) - Sets random seeds for the stochastic parts of the transpiler.\n",
|
||
"</details>\n",
|
||
"\n",
|
||
"The following default values are used if you don't specify any of the above parameters. Refer to the method's [API reference page](../api/qiskit/transpiler_preset) for more information:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "bcaab4a6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"generate_preset_pass_manager(\n",
|
||
" optimization_level=1,\n",
|
||
" backend=None,\n",
|
||
" target=None,\n",
|
||
" basis_gates=None,\n",
|
||
" inst_map=None,\n",
|
||
" coupling_map=None,\n",
|
||
" instruction_durations=None,\n",
|
||
" backend_properties=None,\n",
|
||
" timing_constraints=None,\n",
|
||
" initial_layout=None,\n",
|
||
" layout_method=None,\n",
|
||
" routing_method=None,\n",
|
||
" translation_method=None,\n",
|
||
" scheduling_method=None,\n",
|
||
" approximation_degree=1.0,\n",
|
||
" seed_transpiler=None,\n",
|
||
" unitary_synthesis_method='default',\n",
|
||
" unitary_synthesis_plugin_config=None,\n",
|
||
" hls_config=None,\n",
|
||
" init_method=None,\n",
|
||
" optimization_method=None,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f1acc6e6",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Next steps\n",
|
||
"\n",
|
||
"<Admonition type=\"tip\" title=\"Recommendations\">\n",
|
||
" - Learn how to [Set the optimization level](set-optimization).\n",
|
||
" - Review more [Commonly used parameters](common-parameters).\n",
|
||
" - Learn how to [Set the optimization level when using Qiskit Runtime.](./runtime-options-overview)\n",
|
||
" - Visit the [Transpile with pass managers](transpile-with-pass-managers) topic.\n",
|
||
" - For examples, see [Representing quantum computers.](./represent-quantum-computers)\n",
|
||
" - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial.\n",
|
||
" - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime.\n",
|
||
" - Review the [Transpile API documentation](/api/qiskit/transpiler).\n",
|
||
"</Admonition>"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"description": "The default settings and configuration options for quantum circuit transpilation in the Qiskit SDK.",
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3"
|
||
},
|
||
"title": "Transpilation defaults and configuration options"
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|