76 lines
3.7 KiB
Plaintext
76 lines
3.7 KiB
Plaintext
---
|
||
title: LieTrotter
|
||
description: API reference for qiskit.synthesis.LieTrotter
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.synthesis.LieTrotter
|
||
---
|
||
|
||
# LieTrotter
|
||
|
||
<Class id="qiskit.synthesis.LieTrotter" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.46/qiskit/synthesis/evolution/lie_trotter.py" signature="qiskit.synthesis.LieTrotter(reps=1, insert_barriers=False, cx_structure='chain', atomic_evolution=None)" modifiers="class">
|
||
Bases: [`ProductFormula`](qiskit.synthesis.ProductFormula "qiskit.synthesis.evolution.product_formula.ProductFormula")
|
||
|
||
The Lie-Trotter product formula.
|
||
|
||
The Lie-Trotter formula approximates the exponential of two non-commuting operators with products of their exponentials up to a second order error:
|
||
|
||
$$
|
||
e^{A + B} \approx e^{A}e^{B}.
|
||
$$
|
||
|
||
In this implementation, the operators are provided as sum terms of a Pauli operator. For example, we approximate
|
||
|
||
$$
|
||
e^{-it(XX + ZZ)} = e^{-it XX}e^{-it ZZ} + \mathcal{O}(t^2).
|
||
$$
|
||
|
||
**References**
|
||
|
||
\[1]: D. Berry, G. Ahokas, R. Cleve and B. Sanders, “Efficient quantum algorithms for simulating sparse Hamiltonians” (2006). [arXiv:quant-ph/0508139](https://arxiv.org/abs/quant-ph/0508139) \[2]: N. Hatano and M. Suzuki, “Finding Exponential Product Formulas of Higher Orders” (2005). [arXiv:math-ph/0506007](https://arxiv.org/pdf/math-ph/0506007.pdf)
|
||
|
||
**Parameters**
|
||
|
||
* **reps** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) – The number of time steps.
|
||
* **insert\_barriers** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) – Whether to insert barriers between the atomic evolutions.
|
||
* **cx\_structure** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)")) – How to arrange the CX gates for the Pauli evolutions, can be “chain”, where next neighbor connections are used, or “fountain”, where all qubits are connected to one.
|
||
* **atomic\_evolution** ([*Callable*](https://docs.python.org/3/library/typing.html#typing.Callable "(in Python v3.12)")*\[\[*[*Pauli*](qiskit.quantum_info.Pauli "qiskit.quantum_info.operators.symplectic.pauli.Pauli") *|*[*SparsePauliOp*](qiskit.quantum_info.SparsePauliOp "qiskit.quantum_info.operators.symplectic.sparse_pauli_op.SparsePauliOp")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*],* [*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")*] | None*) – A function to construct the circuit for the evolution of single Pauli string. Per default, a single Pauli evolution is decomposed in a CX chain and a single qubit Z rotation.
|
||
|
||
## Attributes
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.synthesis.LieTrotter.settings">
|
||
Return the settings in a dictionary, which can be used to reconstruct the object.
|
||
|
||
**Returns**
|
||
|
||
A dictionary containing the settings of this product formula.
|
||
|
||
**Raises**
|
||
|
||
[**NotImplementedError**](https://docs.python.org/3/library/exceptions.html#NotImplementedError "(in Python v3.12)") – If a custom atomic evolution is set, which cannot be serialized.
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### synthesize
|
||
|
||
<Function id="qiskit.synthesis.LieTrotter.synthesize" signature="synthesize(evolution)">
|
||
Synthesize an `qiskit.circuit.library.PauliEvolutionGate`.
|
||
|
||
**Parameters**
|
||
|
||
**evolution** ([*PauliEvolutionGate*](qiskit.circuit.library.PauliEvolutionGate "qiskit.circuit.library.PauliEvolutionGate")) – The evolution gate to synthesize.
|
||
|
||
**Returns**
|
||
|
||
A circuit implementing the evolution.
|
||
|
||
**Return type**
|
||
|
||
[QuantumCircuit](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")
|
||
</Function>
|
||
</Class>
|
||
|