qiskit-documentation/docs/api/qiskit/0.46/qiskit.opflow.gradients.Der...

95 lines
7.6 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: DerivativeBase
description: API reference for qiskit.opflow.gradients.DerivativeBase
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.opflow.gradients.DerivativeBase
---
# DerivativeBase
<Class id="qiskit.opflow.gradients.DerivativeBase" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.46/qiskit/opflow/gradients/derivative_base.py" signature="qiskit.opflow.gradients.DerivativeBase" modifiers="class">
Bases: [`ConverterBase`](qiskit.opflow.converters.ConverterBase "qiskit.opflow.converters.converter_base.ConverterBase")
Deprecated: Base class for differentiating opflow objects.
Converter for differentiating opflow objects and handling things like properly differentiating combo\_fns and enforcing product rules when operator coefficients are parameterized.
This is distinct from CircuitGradient converters which use quantum techniques such as parameter shifts and linear combination of unitaries to compute derivatives of circuits.
CircuitGradient - uses quantum techniques to get derivatives of circuits DerivativeBase - uses classical techniques to differentiate opflow data structures
<Admonition title="Deprecated since version 0.24.0" type="danger">
The class `qiskit.opflow.gradients.derivative_base.DerivativeBase` is deprecated as of qiskit-terra 0.24.0. It will be removed in the Qiskit 1.0 release. For code migration guidelines, visit [https://qisk.it/opflow\_migration](https://qisk.it/opflow_migration).
</Admonition>
## Methods
### convert
<Function id="qiskit.opflow.gradients.DerivativeBase.convert" signature="convert(operator, params=None)" modifiers="abstract">
**Parameters**
* **operator** ([*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")) The operator we are taking the gradient, Hessian or QFI of
* **params** ([*ParameterVector*](qiskit.circuit.ParameterVector "qiskit.circuit.parametervector.ParameterVector") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*] | None*) The parameters we are taking the gradient, Hessian or QFI with respect to.
**Returns**
An operator whose evaluation yields the gradient, Hessian or QFI.
**Raises**
[**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.12)") If `params` contains a parameter not present in `operator`.
**Return type**
[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")
</Function>
### gradient\_wrapper
<Function id="qiskit.opflow.gradients.DerivativeBase.gradient_wrapper" signature="gradient_wrapper(operator, bind_params, grad_params=None, backend=None, expectation=None)">
Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
**Parameters**
* **operator** ([*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")) The operator for which we want to get the gradient, Hessian or QFI.
* **bind\_params** ([*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") *|*[*ParameterVector*](qiskit.circuit.ParameterVector "qiskit.circuit.parametervector.ParameterVector") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*]*) The operator parameters to which the parameter values are assigned.
* **grad\_params** ([*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") *|*[*ParameterVector*](qiskit.circuit.ParameterVector "qiskit.circuit.parametervector.ParameterVector") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*] |* [*Tuple*](https://docs.python.org/3/library/typing.html#typing.Tuple "(in Python v3.12)")*\[*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*,* [*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*] |* [*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*Tuple*](https://docs.python.org/3/library/typing.html#typing.Tuple "(in Python v3.12)")*\[*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*,* [*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*]] | None*) The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad\_params = None, then grad\_params = bind\_params
* **backend** ([*Backend*](qiskit.providers.Backend "qiskit.providers.backend.Backend") *|*[*QuantumInstance*](qiskit.utils.QuantumInstance "qiskit.utils.quantum_instance.QuantumInstance") *| None*) The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
* **expectation** ([*ExpectationBase*](qiskit.opflow.expectations.ExpectationBase "qiskit.opflow.expectations.expectation_base.ExpectationBase") *| None*) The expectation converter to be used. If none is set then PauliExpectation() is used.
**Returns**
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
**Return type**
[*Callable*](https://docs.python.org/3/library/typing.html#typing.Callable "(in Python v3.12)")\[\[[*Iterable*](https://docs.python.org/3/library/typing.html#typing.Iterable "(in Python v3.12)")], [*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v2.0)")]
</Function>
### parameter\_expression\_grad
<Function id="qiskit.opflow.gradients.DerivativeBase.parameter_expression_grad" signature="parameter_expression_grad(param_expr, param)" modifiers="static">
Get the derivative of a parameter expression w\.r.t. the given parameter.
<Admonition title="Deprecated since version 0.18.0" type="danger">
The method `qiskit.opflow.gradients.derivative_base.DerivativeBase.parameter_expression_grad()` is deprecated as of qiskit-terra 0.18.0. It will be removed in the Qiskit 1.0 release. Instead, use the ParameterExpression.gradient method.
</Admonition>
**Parameters**
* **param\_expr** ([*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")) The Parameter Expression for which we compute the derivative
* **param** ([*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")) Parameter w\.r.t. which we want to take the derivative
**Returns**
ParameterExpression representing the gradient of param\_expr w\.r.t. param
**Return type**
[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") | [float](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")
</Function>
</Class>