qiskit-documentation/docs/api/qiskit/0.45/qiskit.opflow.list_ops.Comp...

237 lines
11 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: ComposedOp
description: API reference for qiskit.opflow.list_ops.ComposedOp
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.opflow.list_ops.ComposedOp
---
# ComposedOp
<Class id="qiskit.opflow.list_ops.ComposedOp" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.45/qiskit/opflow/list_ops/composed_op.py" signature="qiskit.opflow.list_ops.ComposedOp(oplist, coeff=1.0, abelian=False)" modifiers="class">
Bases: [`ListOp`](qiskit.opflow.list_ops.ListOp "qiskit.opflow.list_ops.list_op.ListOp")
Deprecated: A class for lazily representing compositions of Operators. Often Operators cannot be efficiently composed with one another, but may be manipulated further so that they can be composed later. This class holds logic to indicate that the Operators in `oplist` are meant to be composed, and therefore if they reach a point in which they can be, such as after conversion to QuantumCircuits or matrices, they can be reduced by composition.
<Admonition title="Deprecated since version 0.24.0" type="danger">
The class `qiskit.opflow.list_ops.composed_op.ComposedOp` is deprecated as of qiskit-terra 0.24.0. It will be removed no earlier than 3 months after the release date. For code migration guidelines, visit [https://qisk.it/opflow\_migration](https://qisk.it/opflow_migration).
</Admonition>
**Parameters**
* **oplist** ([*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")*]*) The Operators being composed.
* **coeff** ([*complex*](https://docs.python.org/3/library/functions.html#complex "(in Python v3.12)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")) A coefficient multiplying the operator
* **abelian** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) Indicates whether the Operators in `oplist` are known to mutually commute.
## Attributes
### INDENTATION
<Attribute id="qiskit.opflow.list_ops.ComposedOp.INDENTATION" attributeValue="'  '" />
### abelian
<Attribute id="qiskit.opflow.list_ops.ComposedOp.abelian">
Whether the Operators in `oplist` are known to commute with one another.
**Returns**
A bool indicating whether the `oplist` is Abelian.
</Attribute>
### coeff
<Attribute id="qiskit.opflow.list_ops.ComposedOp.coeff">
The scalar coefficient multiplying the Operator.
**Returns**
The coefficient.
</Attribute>
### coeffs
<Attribute id="qiskit.opflow.list_ops.ComposedOp.coeffs">
Return a list of the coefficients of the operators listed. Raises exception for nested Listops.
</Attribute>
### combo\_fn
<Attribute id="qiskit.opflow.list_ops.ComposedOp.combo_fn">
The function defining how to combine `oplist` (or Numbers, or NumPy arrays) to produce the Operators underlying function. For example, SummedOps combination function is to add all of the Operators in `oplist`.
**Returns**
The combination function.
</Attribute>
### distributive
<Attribute id="qiskit.opflow.list_ops.ComposedOp.distributive" />
### grad\_combo\_fn
<Attribute id="qiskit.opflow.list_ops.ComposedOp.grad_combo_fn">
The gradient of `combo_fn`.
</Attribute>
### instance\_id
<Attribute id="qiskit.opflow.list_ops.ComposedOp.instance_id">
Return the unique instance id.
</Attribute>
### num\_qubits
<Attribute id="qiskit.opflow.list_ops.ComposedOp.num_qubits" />
### oplist
<Attribute id="qiskit.opflow.list_ops.ComposedOp.oplist">
The list of `OperatorBases` defining the underlying function of this Operator.
**Returns**
The Operators defining the ListOp
</Attribute>
### parameters
<Attribute id="qiskit.opflow.list_ops.ComposedOp.parameters" />
### settings
<Attribute id="qiskit.opflow.list_ops.ComposedOp.settings">
Return settings.
</Attribute>
## Methods
### adjoint
<Function id="qiskit.opflow.list_ops.ComposedOp.adjoint" signature="adjoint()">
Return a new Operator equal to the Operators adjoint (conjugate transpose), overloaded by `~`. For StateFns, this also turns the StateFn into a measurement.
**Returns**
An `OperatorBase` equivalent to the adjoint of self.
**Return type**
[*ComposedOp*](#qiskit.opflow.list_ops.ComposedOp "qiskit.opflow.list_ops.composed_op.ComposedOp")
</Function>
### compose
<Function id="qiskit.opflow.list_ops.ComposedOp.compose" signature="compose(other, permutation=None, front=False)">
Return Operator Composition between self and other (linear algebra-style: A\@B(x) = A(B(x))), overloaded by `@`.
Note: You must be conscious of Quantum Circuit vs. Linear Algebra ordering conventions. Meaning, X.compose(Y) produces an X∘Y on qubit 0, but would produce a QuantumCircuit which looks like
> -\[Y]-\[X]-
Because Terra prints circuits with the initial state at the left side of the circuit.
**Parameters**
* **other** ([*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")) The `OperatorBase` with which to compose self.
* **permutation** ([*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")*] | None*) `List[int]` which defines permutation on other operator.
* **front** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) If front==True, return `other.compose(self)`.
**Returns**
An `OperatorBase` equivalent to the function composition of self and other.
**Return type**
[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")
</Function>
### eval
<Function id="qiskit.opflow.list_ops.ComposedOp.eval" signature="eval(front=None)">
Evaluate the Operators underlying function, either on a binary string or another Operator. A square binary Operator can be defined as a function taking a binary function to another binary function. This method returns the value of that function for a given StateFn or binary string. For example, `op.eval('0110').eval('1110')` can be seen as querying the Operators matrix representation by row 6 and column 14, and will return the complex value at those “indices.” Similarly for a StateFn, `op.eval('1011')` will return the complex value at row 11 of the vector representation of the StateFn, as all StateFns are defined to be evaluated from Zero implicitly (i.e. it is as if `.eval('0000')` is already called implicitly to always “indexing” from column 0).
ListOps eval recursively evaluates each Operator in `oplist`, and combines the results using the recombination function `combo_fn`.
**Parameters**
**front** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)") *|*[*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)") *|*[*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)") *|*[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase") *|*[*Statevector*](qiskit.quantum_info.Statevector "qiskit.quantum_info.states.statevector.Statevector") *| None*) The bitstring, dict of bitstrings (with values being coefficients), or StateFn to evaluated by the Operators underlying function.
**Returns**
The output of the `oplist` Operators evaluation function, combined with the `combo_fn`. If either self or front contain proper `ListOps` (not ListOp subclasses), the result is an n-dimensional list of complex or StateFn results, resulting from the recursive evaluation by each OperatorBase in the ListOps.
**Raises**
* [**NotImplementedError**](https://docs.python.org/3/library/exceptions.html#NotImplementedError "(in Python v3.12)") Raised if called for a subclass which is not distributive.
* [**TypeError**](https://docs.python.org/3/library/exceptions.html#TypeError "(in Python v3.12)") Operators with mixed hierarchies, such as a ListOp containing both PrimitiveOps and ListOps, are not supported.
* [**NotImplementedError**](https://docs.python.org/3/library/exceptions.html#NotImplementedError "(in Python v3.12)") Attempting to call ListOps eval from a non-distributive subclass.
**Return type**
[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase") | [complex](https://docs.python.org/3/library/functions.html#complex "(in Python v3.12)")
</Function>
### non\_distributive\_reduce
<Function id="qiskit.opflow.list_ops.ComposedOp.non_distributive_reduce" signature="non_distributive_reduce()">
Reduce without attempting to expand all distributive compositions.
**Returns**
The reduced Operator.
**Return type**
[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")
</Function>
### reduce
<Function id="qiskit.opflow.list_ops.ComposedOp.reduce" signature="reduce()">
Try collapsing the Operator structure, usually after some type of conversion, e.g. trying to add Operators in a SummedOp or delete needless IGates in a CircuitOp. If no reduction is available, just returns self.
**Returns**
The reduced `OperatorBase`.
**Return type**
[*OperatorBase*](qiskit.opflow.OperatorBase "qiskit.opflow.operator_base.OperatorBase")
</Function>
### to\_circuit
<Function id="qiskit.opflow.list_ops.ComposedOp.to_circuit" signature="to_circuit()">
Returns the quantum circuit, representing the composed operator.
**Returns**
The circuit representation of the composed operator.
**Raises**
[**OpflowError**](opflow#qiskit.opflow.OpflowError "qiskit.opflow.OpflowError") for operators where a single underlying circuit can not be obtained.
**Return type**
[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
</Function>
### to\_matrix
<Function id="qiskit.opflow.list_ops.ComposedOp.to_matrix" signature="to_matrix(massive=False)">
Return NumPy representation of the Operator. Represents the evaluation of the Operators underlying function on every combination of basis binary strings. Warn if more than 16 qubits to force having to set `massive=True` if such a large vector is desired.
**Returns**
The NumPy `ndarray` equivalent to this Operator.
**Return type**
[*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)")
</Function>
</Class>