qiskit-documentation/docs/api/qiskit/0.45/qiskit.algorithms.optimizer...

215 lines
9.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: L_BFGS_B
description: API reference for qiskit.algorithms.optimizers.L_BFGS_B
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.L_BFGS_B
---
<span id="l-bfgs-b" />
# L\_BFGS\_B
<Class id="qiskit.algorithms.optimizers.L_BFGS_B" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.45/qiskit/algorithms/optimizers/l_bfgs_b.py" signature="qiskit.algorithms.optimizers.L_BFGS_B(maxfun=15000, maxiter=15000, ftol=2.220446049250313e-15, iprint=-1, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)" modifiers="class">
Bases: [`SciPyOptimizer`](qiskit.algorithms.optimizers.SciPyOptimizer "qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer")
Limited-memory BFGS Bound optimizer.
The target goal of Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-BFGS-B) is to minimize the value of a differentiable scalar function $f$. This optimizer is a quasi-Newton method, meaning that, in contrast to Newtonss method, it does not require $f$s Hessian (the matrix of $f$s second derivatives) when attempting to compute $f$s minimum value.
Like BFGS, L-BFGS is an iterative method for solving unconstrained, non-linear optimization problems, but approximates BFGS using a limited amount of computer memory. L-BFGS starts with an initial estimate of the optimal value, and proceeds iteratively to refine that estimate with a sequence of better estimates.
The derivatives of $f$ are used to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of $f$. L-BFGS-B extends L-BFGS to handle simple, per-variable bound constraints.
Uses `scipy.optimize.fmin_l_bfgs_b`. For further detail, please refer to [https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html](https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html)
**Parameters**
* **maxfun** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Maximum number of function evaluations.
* **maxiter** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Maximum number of iterations.
* **ftol** (*SupportsFloat*) The iteration stops when $(f^k - f^{k+1}) / \max\{|f^k|, |f^{k+1}|,1\} \leq \text{ftol}$.
* **iprint** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Controls the frequency of output. `iprint < 0` means no output; `iprint = 0` print only one line at the last iteration; `0 < iprint < 99` print also $f$ and $|\text{proj} g|$ every iprint iterations; `iprint = 99` print details of every iteration except n-vectors; `iprint = 100` print also the changes of active set and final $x$; `iprint > 100` print details of every iteration including $x$ and $g$.
* **eps** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) If jac is approximated, use this value for the step size.
* **options** ([*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)") *| None*) A dictionary of solver options.
* **max\_evals\_grouped** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Max number of default gradient evaluations performed simultaneously.
* **kwargs** additional kwargs for `scipy.optimize.minimize`.
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.L_BFGS_B.settings" />
## Methods
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.get_support_level" signature="get_support_level()">
Return support level dictionary
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.gradient_num_diff" signature="gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) max evals grouped, defaults to 1 (i.e. no batching).
**Returns**
the gradient computed
**Return type**
grad
</Function>
### minimize
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.minimize" signature="minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (*Callable\[\[POINT],* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]*) The scalar function to minimize.
* **x0** (*POINT*) The initial point for the minimization.
* **jac** (*Callable\[\[POINT], POINT] | None*) The gradient of the scalar function `fun`.
* **bounds** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")*\[*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]] | None*) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
**Return type**
[OptimizerResult](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.OptimizerResult")
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.print_options" signature="print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.set_max_evals_grouped" signature="set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.set_options" signature="set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** ([*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)")) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.L_BFGS_B.wrap_function" signature="wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
</Class>