qiskit-documentation/docs/api/qiskit/0.45/qiskit.algorithms.optimizer...

216 lines
8.0 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: ISRES
description: API reference for qiskit.algorithms.optimizers.ISRES
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.ISRES
---
# ISRES
<Class id="qiskit.algorithms.optimizers.ISRES" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.45/qiskit/algorithms/optimizers/nlopts/isres.py" signature="qiskit.algorithms.optimizers.ISRES(max_evals=1000)" modifiers="class">
Bases: `NLoptOptimizer`
Improved Stochastic Ranking Evolution Strategy optimizer.
Improved Stochastic Ranking Evolution Strategy (ISRES) is an algorithm for non-linearly constrained global optimization. It has heuristics to escape local optima, even though convergence to a global optima is not guaranteed. The evolution strategy is based on a combination of a mutation rule and differential variation. The fitness ranking is simply via the objective function for problems without nonlinear constraints. When nonlinear constraints are included, the [stochastic ranking proposed by Runarsson and Yao](https://notendur.hi.is/tpr/software/sres/Tec311r.pdf) is employed. This method supports arbitrary nonlinear inequality and equality constraints, in addition to the bound constraints.
NLopt global optimizer, derivative-free. For further detail, please refer to [http://nlopt.readthedocs.io/en/latest/NLopt\_Algorithms/#isres-improved-stochastic-ranking-evolution-strategy](http://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#isres-improved-stochastic-ranking-evolution-strategy)
**Parameters**
**max\_evals** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Maximum allowed number of function evaluations.
**Raises**
[**MissingOptionalLibraryError**](exceptions#qiskit.exceptions.MissingOptionalLibraryError "qiskit.exceptions.MissingOptionalLibraryError") NLopt library not installed.
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.ISRES.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.ISRES.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.ISRES.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.ISRES.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.ISRES.settings" />
## Methods
### get\_nlopt\_optimizer
<Function id="qiskit.algorithms.optimizers.ISRES.get_nlopt_optimizer" signature="get_nlopt_optimizer()">
Return NLopt optimizer type
**Return type**
*NLoptOptimizerType*
</Function>
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.ISRES.get_support_level" signature="get_support_level()">
return support level dictionary
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.ISRES.gradient_num_diff" signature="gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) max evals grouped, defaults to 1 (i.e. no batching).
**Returns**
the gradient computed
**Return type**
grad
</Function>
### minimize
<Function id="qiskit.algorithms.optimizers.ISRES.minimize" signature="minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (*Callable\[\[POINT],* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]*) The scalar function to minimize.
* **x0** (*POINT*) The initial point for the minimization.
* **jac** (*Callable\[\[POINT], POINT] | None*) The gradient of the scalar function `fun`.
* **bounds** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")*\[*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]] | None*) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
**Return type**
[OptimizerResult](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.OptimizerResult")
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.ISRES.print_options" signature="print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.ISRES.set_max_evals_grouped" signature="set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.ISRES.set_options" signature="set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** ([*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)")) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.ISRES.wrap_function" signature="wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
</Class>