qiskit-documentation/docs/api/qiskit/0.44/qiskit.circuit.library.Phas...

237 lines
9.5 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: PhaseEstimation
description: API reference for qiskit.circuit.library.PhaseEstimation
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.PhaseEstimation
---
# PhaseEstimation
<Class id="qiskit.circuit.library.PhaseEstimation" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.25/qiskit/circuit/library/phase_estimation.py" signature="qiskit.circuit.library.PhaseEstimation(num_evaluation_qubits, unitary, iqft=None, name='QPE')" modifiers="class">
Bases: [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
Phase Estimation circuit.
In the Quantum Phase Estimation (QPE) algorithm \[1, 2, 3], the Phase Estimation circuit is used to estimate the phase $\phi$ of an eigenvalue $e^{2\pi i\phi}$ of a unitary operator $U$, provided with the corresponding eigenstate $|psi\rangle$. That is
$$
U|\psi\rangle = e^{2\pi i\phi} |\psi\rangle
$$
This estimation (and thereby this circuit) is a central routine to several well-known algorithms, such as Shors algorithm or Quantum Amplitude Estimation.
**References:**
**\[1]: Kitaev, A. Y. (1995). Quantum measurements and the Abelian Stabilizer Problem. 122.**
[quant-ph/9511026](http://arxiv.org/abs/quant-ph/9511026)
**\[2]: Michael A. Nielsen and Isaac L. Chuang. 2011.**
Quantum Computation and Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University Press, New York, NY, USA.
**\[3]: Qiskit**
[textbook](https://learn.qiskit.org/course/ch-algorithms/quantum-phase-estimation)
**Parameters**
* **num\_evaluation\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) The number of evaluation qubits.
* **unitary** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")) The unitary operation $U$ which will be repeated and controlled.
* **iqft** ([*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit") *| None*) A inverse Quantum Fourier Transform, per default the inverse of [`QFT`](qiskit.circuit.library.QFT "qiskit.circuit.library.QFT") is used. Note that the QFT should not include the usual swaps!
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)")) The name of the circuit.
<Admonition title="Note" type="note">
The inverse QFT should not include a swap of the qubit order.
</Admonition>
**Reference Circuit:**
![../\_images/qiskit-circuit-library-PhaseEstimation-1.png](/images/api/qiskit/0.44/qiskit-circuit-library-PhaseEstimation-1.png)
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.PhaseEstimation.ancillas">
Returns a list of ancilla bits in the order that the registers were added.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.PhaseEstimation.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.PhaseEstimation.clbits">
Returns a list of classical bits in the order that the registers were added.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.PhaseEstimation.data">
Return the circuit data (instructions and context).
**Returns**
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
**Return type**
QuantumCircuitData
</Attribute>
### extension\_lib
<Attribute id="qiskit.circuit.library.PhaseEstimation.extension_lib" attributeValue="'include &#x22;qelib1.inc&#x22;;'" />
### global\_phase
<Attribute id="qiskit.circuit.library.PhaseEstimation.global_phase">
Return the global phase of the circuit in radians.
</Attribute>
### header
<Attribute id="qiskit.circuit.library.PhaseEstimation.header" attributeValue="'OPENQASM 2.0;'" />
### instances
<Attribute id="qiskit.circuit.library.PhaseEstimation.instances" attributeValue="317" />
### layout
<Attribute id="qiskit.circuit.library.PhaseEstimation.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.PhaseEstimation.metadata">
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided `dict` of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.PhaseEstimation.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.PhaseEstimation.num_clbits">
Return number of classical bits.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.PhaseEstimation.num_parameters">
The number of parameter objects in the circuit.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.PhaseEstimation.num_qubits">
Return number of qubits.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.PhaseEstimation.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.12)") When circuit is not scheduled.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.PhaseEstimation.parameters">
The parameters defined in the circuit.
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
**Examples**
The snippet below shows that insertion order of parameters does not matter.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
```python
```
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```
**Returns**
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.PhaseEstimation.prefix" attributeValue="'circuit'" />
### qubits
<Attribute id="qiskit.circuit.library.PhaseEstimation.qubits">
Returns a list of quantum bits in the order that the registers were added.
</Attribute>
</Class>