qiskit-documentation/docs/api/qiskit/0.41/qiskit.circuit.library.Line...

178 lines
5.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: LinearFunction
description: API reference for qiskit.circuit.library.LinearFunction
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.LinearFunction
---
# LinearFunction
<Class id="qiskit.circuit.library.LinearFunction" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.23/qiskit/circuit/library/generalized_gates/linear_function.py" signature="LinearFunction(linear, validate_input=False)" modifiers="class">
Bases: [`qiskit.circuit.gate.Gate`](qiskit.circuit.Gate "qiskit.circuit.gate.Gate")
A linear reversible circuit on n qubits.
Internally, a linear function acting on n qubits is represented as a n x n matrix of 0s and 1s in numpy array format.
A linear function can be synthesized into CX and SWAP gates using the PatelMarkovHayes algorithm, as implemented in `cnot_synth()` based on reference \[1].
For efficiency, the internal n x n matrix is stored in the format expected by cnot\_synth, which is the big-endian (and not the little-endian) bit-ordering convention.
**Example:** the circuit
```python
q_0: ──■──
┌─┴─┐
q_1: ┤ X ├
└───┘
q_2: ─────
```
is represented by a 3x3 linear matrix
$$
\begin{split}\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\end{split}
$$
**References:**
\[1] Ketan N. Patel, Igor L. Markov, and John P. Hayes, Optimal synthesis of linear reversible circuits, Quantum Inf. Comput. 8(3) (2008). [Online at umich.edu.](https://web.eecs.umich.edu/~imarkov/pubs/jour/qic08-cnot.pdf)
Create a new linear function.
**Parameters**
* **linear** (*list\[list] or ndarray\[bool] or* [*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")) either an n x n matrix, describing the linear function, or a quantum circuit composed of linear gates only (currently supported gates are CX and SWAP).
* **validate\_input** (`Optional`\[`bool`]) if True, performs more expensive input validation checks, such as checking that a given n x n matrix is invertible.
**Raises**
**CircuitError** if the input is invalid: either a matrix is non \{square, invertible}, or a quantum circuit contains non-linear gates.
## Methods Defined Here
### is\_permutation
<Function id="qiskit.circuit.library.LinearFunction.is_permutation" signature="LinearFunction.is_permutation()">
Returns whether this linear function is a permutation, that is whether every row and every column of the n x n matrix has exactly one 1.
**Return type**
`bool`
</Function>
### permutation\_pattern
<Function id="qiskit.circuit.library.LinearFunction.permutation_pattern" signature="LinearFunction.permutation_pattern()">
This method first checks if a linear function is a permutation and raises a qiskit.circuit.exceptions.CircuitError if not. In the case that this linear function is a permutation, returns the permutation pattern.
</Function>
### synthesize
<Function id="qiskit.circuit.library.LinearFunction.synthesize" signature="LinearFunction.synthesize()">
Synthesizes the linear function into a quantum circuit.
**Returns**
A circuit implementing the evolution.
**Return type**
[QuantumCircuit](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")
</Function>
### validate\_parameter
<Function id="qiskit.circuit.library.LinearFunction.validate_parameter" signature="LinearFunction.validate_parameter(parameter)">
Parameter validation
</Function>
## Attributes
### condition\_bits
<Attribute id="qiskit.circuit.library.LinearFunction.condition_bits">
Get Clbits in condition.
**Return type**
`List`\[[`Clbit`](qiskit.circuit.Clbit "qiskit.circuit.classicalregister.Clbit")]
</Attribute>
### decompositions
<Attribute id="qiskit.circuit.library.LinearFunction.decompositions">
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
</Attribute>
### definition
<Attribute id="qiskit.circuit.library.LinearFunction.definition">
Return definition in terms of other basic gates.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.LinearFunction.duration">
Get the duration.
</Attribute>
### label
<Attribute id="qiskit.circuit.library.LinearFunction.label">
Return instruction label
**Return type**
`str`
</Attribute>
### linear
<Attribute id="qiskit.circuit.library.LinearFunction.linear">
Returns the n x n matrix representing this linear function
</Attribute>
### name
<Attribute id="qiskit.circuit.library.LinearFunction.name">
Return the name.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.LinearFunction.num_clbits">
Return the number of clbits.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.LinearFunction.num_qubits">
Return the number of qubits.
</Attribute>
### original\_circuit
<Attribute id="qiskit.circuit.library.LinearFunction.original_circuit">
Returns the original circuit used to construct this linear function (including None, when the linear function is not constructed from a circuit).
</Attribute>
### params
<Attribute id="qiskit.circuit.library.LinearFunction.params">
return instruction params.
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.LinearFunction.unit">
Get the time unit of duration.
</Attribute>
</Class>