qiskit-documentation/docs/api/qiskit/0.40/qiskit.result.CorrelatedRea...

163 lines
6.5 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: CorrelatedReadoutMitigator
description: API reference for qiskit.result.CorrelatedReadoutMitigator
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.result.CorrelatedReadoutMitigator
---
# CorrelatedReadoutMitigator
<Class id="qiskit.result.CorrelatedReadoutMitigator" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.23/qiskit/result/mitigation/correlated_readout_mitigator.py" signature="CorrelatedReadoutMitigator(assignment_matrix, qubits=None)" modifiers="class">
Bases: [`qiskit.result.mitigation.base_readout_mitigator.BaseReadoutMitigator`](qiskit.result.BaseReadoutMitigator "qiskit.result.mitigation.base_readout_mitigator.BaseReadoutMitigator")
N-qubit readout error mitigator.
Mitigates [`expectation_value()`](qiskit.result.CorrelatedReadoutMitigator#expectation_value "qiskit.result.CorrelatedReadoutMitigator.expectation_value") and [`quasi_probabilities()`](qiskit.result.CorrelatedReadoutMitigator#quasi_probabilities "qiskit.result.CorrelatedReadoutMitigator.quasi_probabilities"). The mitigation\_matrix should be calibrated using qiskit experiments. This mitigation method should be used in case the readout errors of the qubits are assumed to be correlated. The mitigation\_matrix of *N* qubits is of size $2^N x 2^N$ so the mitigation complexity is $O(4^N)$.
Initialize a CorrelatedReadoutMitigator
**Parameters**
* **assignment\_matrix** (`ndarray`) readout error assignment matrix.
* **qubits** (`Optional`\[`Iterable`\[`int`]]) Optional, the measured physical qubits for mitigation.
**Raises**
**QiskitError** matrix size does not agree with number of qubits
## Methods
### assignment\_matrix
<Function id="qiskit.result.CorrelatedReadoutMitigator.assignment_matrix" signature="CorrelatedReadoutMitigator.assignment_matrix(qubits=None)">
Return the readout assignment matrix for specified qubits.
The assignment matrix is the stochastic matrix $A$ which assigns a noisy readout probability distribution to an ideal input readout distribution: $P(i|j) = \langle i | A | j \rangle$.
**Parameters**
**qubits** (`Optional`\[`List`\[`int`]]) Optional, qubits being measured.
**Returns**
the assignment matrix A.
**Return type**
np.ndarray
</Function>
### expectation\_value
<Function id="qiskit.result.CorrelatedReadoutMitigator.expectation_value" signature="CorrelatedReadoutMitigator.expectation_value(data, diagonal=None, qubits=None, clbits=None, shots=None)">
Compute the mitigated expectation value of a diagonal observable.
This computes the mitigated estimator of $\langle O \rangle = \mbox{Tr}[\rho. O]$ of a diagonal observable $O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|$.
**Parameters**
* **data** ([`Counts`](qiskit.result.Counts "qiskit.result.counts.Counts")) Counts object
* **diagonal** (`Union`\[`Callable`, `dict`, `str`, `ndarray`, `None`]) Optional, the vector of diagonal values for summing the expectation value. If `None` the the default value is $[1, -1]^\otimes n$.
* **qubits** (`Optional`\[`Iterable`\[`int`]]) Optional, the measured physical qubits the count bitstrings correspond to. If None qubits are assumed to be $[0, ..., n-1]$.
* **clbits** (`Optional`\[`List`\[`int`]]) Optional, if not None marginalize counts to the specified bits.
* **shots** (`Optional`\[`int`]) the number of shots.
**Returns**
the expectation value and an upper bound of the standard deviation.
**Return type**
(float, float)
#### Additional Information:
The diagonal observable $O$ is input using the `diagonal` kwarg as a list or Numpy array $[O(0), ..., O(2^n -1)]$. If no diagonal is specified the diagonal of the Pauli operator :math\`O = mbox\{diag}(Z^\{otimes n}) = \[1, -1]^\{otimes n}\` is used. The `clbits` kwarg is used to marginalize the input counts dictionary over the specified bit-values, and the `qubits` kwarg is used to specify which physical qubits these bit-values correspond to as `circuit.measure(qubits, clbits)`.
</Function>
### mitigation\_matrix
<Function id="qiskit.result.CorrelatedReadoutMitigator.mitigation_matrix" signature="CorrelatedReadoutMitigator.mitigation_matrix(qubits=None)">
Return the readout mitigation matrix for the specified qubits.
The mitigation matrix $A^{-1}$ is defined as the inverse of the [`assignment_matrix()`](qiskit.result.CorrelatedReadoutMitigator#assignment_matrix "qiskit.result.CorrelatedReadoutMitigator.assignment_matrix") $A$.
**Parameters**
**qubits** (`Optional`\[`List`\[`int`]]) Optional, qubits being measured.
**Returns**
the measurement error mitigation matrix $A^{-1}$.
**Return type**
np.ndarray
</Function>
### quasi\_probabilities
<Function id="qiskit.result.CorrelatedReadoutMitigator.quasi_probabilities" signature="CorrelatedReadoutMitigator.quasi_probabilities(data, qubits=None, clbits=None, shots=None)">
Compute mitigated quasi probabilities value.
**Parameters**
* **data** ([`Counts`](qiskit.result.Counts "qiskit.result.counts.Counts")) counts object
* **qubits** (`Optional`\[`List`\[`int`]]) qubits the count bitstrings correspond to.
* **clbits** (`Optional`\[`List`\[`int`]]) Optional, marginalize counts to just these bits.
* **shots** (`Optional`\[`int`]) Optional, the total number of shots, if None shots will be calculated as the sum of all counts.
**Returns**
**A dictionary containing pairs of \[output, mean] where “output”**
is the key in the dictionaries, which is the length-N bitstring of a measured standard basis state, and “mean” is the mean of non-zero quasi-probability estimates.
**Return type**
QuasiDistibution
</Function>
### stddev\_upper\_bound
<Function id="qiskit.result.CorrelatedReadoutMitigator.stddev_upper_bound" signature="CorrelatedReadoutMitigator.stddev_upper_bound(shots)">
Return an upper bound on standard deviation of expval estimator.
**Parameters**
**shots** (`int`) Number of shots used for expectation value measurement.
**Returns**
the standard deviation upper bound.
**Return type**
float
</Function>
## Attributes
### qubits
<Attribute id="qiskit.result.CorrelatedReadoutMitigator.qubits">
The device qubits for this mitigator
**Return type**
`Tuple`\[`int`]
</Attribute>
### settings
<Attribute id="qiskit.result.CorrelatedReadoutMitigator.settings">
Return settings.
**Return type**
`Dict`
</Attribute>
</Class>