qiskit-documentation/docs/api/qiskit/0.40/qiskit.extensions.UnitaryGa...

378 lines
10 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: UnitaryGate
description: API reference for qiskit.extensions.UnitaryGate
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.extensions.UnitaryGate
---
# UnitaryGate
<Class id="qiskit.extensions.UnitaryGate" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.23/qiskit/extensions/unitary.py" signature="UnitaryGate(data, label=None)" modifiers="class">
Bases: [`qiskit.circuit.gate.Gate`](qiskit.circuit.Gate "qiskit.circuit.gate.Gate")
Class quantum gates specified by a unitary matrix.
**Example**
We can create a unitary gate from a unitary matrix then add it to a quantum circuit. The matrix can also be directly applied to the quantum circuit, see `unitary()`.
```python
from qiskit import QuantumCircuit
from qiskit.extensions import UnitaryGate
matrix = [[0, 0, 0, 1],
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0]]
gate = UnitaryGate(matrix)
circuit = QuantumCircuit(2)
circuit.append(gate, [0, 1])
```
Create a gate from a numeric unitary matrix.
**Parameters**
* **data** (*matrix or* [*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) unitary operator.
* **label** (*str*) unitary name for backend \[Default: None].
**Raises**
**ExtensionError** if input data is not an N-qubit unitary operator.
## Methods
### add\_decomposition
<Function id="qiskit.extensions.UnitaryGate.add_decomposition" signature="UnitaryGate.add_decomposition(decomposition)">
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
</Function>
### adjoint
<Function id="qiskit.extensions.UnitaryGate.adjoint" signature="UnitaryGate.adjoint()">
Return the adjoint of the unitary.
</Function>
### assemble
<Function id="qiskit.extensions.UnitaryGate.assemble" signature="UnitaryGate.assemble()">
Assemble a QasmQobjInstruction
</Function>
### broadcast\_arguments
<Function id="qiskit.extensions.UnitaryGate.broadcast_arguments" signature="UnitaryGate.broadcast_arguments(qargs, cargs)">
Validation and handling of the arguments and its relationship.
For example, `cx([q[0],q[1]], q[2])` means `cx(q[0], q[2]); cx(q[1], q[2])`. This method yields the arguments in the right grouping. In the given example:
```python
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
```
The general broadcasting rules are:
> * If len(qargs) == 1:
>
> ```python
> [q[0], q[1]] -> [q[0]],[q[1]]
> ```
>
> * If len(qargs) == 2:
>
> ```python
> [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
> [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]]
> [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
> ```
>
> * If len(qargs) >= 3:
>
> ```python
> [q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
> ```
**Parameters**
* **qargs** (`List`) List of quantum bit arguments.
* **cargs** (`List`) List of classical bit arguments.
**Return type**
`Tuple`\[`List`, `List`]
**Returns**
A tuple with single arguments.
**Raises**
**CircuitError** If the input is not valid. For example, the number of arguments does not match the gate expectation.
</Function>
### c\_if
<Function id="qiskit.extensions.UnitaryGate.c_if" signature="UnitaryGate.c_if(classical, val)">
Set a classical equality condition on this instruction between the register or cbit `classical` and value `val`.
<Admonition title="Note" type="note">
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
</Admonition>
</Function>
### conjugate
<Function id="qiskit.extensions.UnitaryGate.conjugate" signature="UnitaryGate.conjugate()">
Return the conjugate of the unitary.
</Function>
### control
<Function id="qiskit.extensions.UnitaryGate.control" signature="UnitaryGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)">
Return controlled version of gate
**Parameters**
* **num\_ctrl\_qubits** (*int*) number of controls to add to gate (default=1)
* **label** (*str*) optional gate label
* **ctrl\_state** (*int or str or None*) The control state in decimal or as a bit string (e.g. 1011). If None, use 2\*\*num\_ctrl\_qubits-1.
**Returns**
controlled version of gate.
**Return type**
[UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
**Raises**
* **QiskitError** Invalid ctrl\_state.
* **ExtensionError** Non-unitary controlled unitary.
</Function>
### copy
<Function id="qiskit.extensions.UnitaryGate.copy" signature="UnitaryGate.copy(name=None)">
Copy of the instruction.
**Parameters**
**name** (*str*) name to be given to the copied circuit, if None then the name stays the same.
**Returns**
**a copy of the current instruction, with the name**
updated if it was provided
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### inverse
<Function id="qiskit.extensions.UnitaryGate.inverse" signature="UnitaryGate.inverse()">
Return the adjoint of the unitary.
</Function>
### is\_parameterized
<Function id="qiskit.extensions.UnitaryGate.is_parameterized" signature="UnitaryGate.is_parameterized()">
Return True .IFF. instruction is parameterized else False
</Function>
### power
<Function id="qiskit.extensions.UnitaryGate.power" signature="UnitaryGate.power(exponent)">
Creates a unitary gate as gate^exponent.
**Parameters**
**exponent** (*float*) Gate^exponent
**Returns**
To which to\_matrix is self.to\_matrix^exponent.
**Return type**
[qiskit.extensions.UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
**Raises**
**CircuitError** If Gate is not unitary
</Function>
### qasm
<Function id="qiskit.extensions.UnitaryGate.qasm" signature="UnitaryGate.qasm()">
The qasm for a custom unitary gate This is achieved by adding a custom gate that corresponds to the definition of this gate. It gives the gate a random name if one hasnt been given to it.
</Function>
### repeat
<Function id="qiskit.extensions.UnitaryGate.repeat" signature="UnitaryGate.repeat(n)">
Creates an instruction with gate repeated n amount of times.
**Parameters**
**n** (*int*) Number of times to repeat the instruction
**Returns**
Containing the definition.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
**CircuitError** If n \< 1.
</Function>
### reverse\_ops
<Function id="qiskit.extensions.UnitaryGate.reverse_ops" signature="UnitaryGate.reverse_ops()">
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
**Returns**
**a new instruction with**
sub-instructions reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### soft\_compare
<Function id="qiskit.extensions.UnitaryGate.soft_compare" signature="UnitaryGate.soft_compare(other)">
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
**Parameters**
**other** (*instruction*) other instruction.
**Returns**
are self and other equal up to parameter expressions.
**Return type**
bool
</Function>
### to\_matrix
<Function id="qiskit.extensions.UnitaryGate.to_matrix" signature="UnitaryGate.to_matrix()">
Return a Numpy.array for the gate unitary matrix.
**Returns**
if the Gate subclass has a matrix definition.
**Return type**
np.ndarray
**Raises**
**CircuitError** If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
</Function>
### transpose
<Function id="qiskit.extensions.UnitaryGate.transpose" signature="UnitaryGate.transpose()">
Return the transpose of the unitary.
</Function>
### validate\_parameter
<Function id="qiskit.extensions.UnitaryGate.validate_parameter" signature="UnitaryGate.validate_parameter(parameter)">
Unitary gate parameter has to be an ndarray.
</Function>
## Attributes
### condition\_bits
<Attribute id="qiskit.extensions.UnitaryGate.condition_bits">
Get Clbits in condition.
**Return type**
`List`\[[`Clbit`](qiskit.circuit.Clbit "qiskit.circuit.classicalregister.Clbit")]
</Attribute>
### decompositions
<Attribute id="qiskit.extensions.UnitaryGate.decompositions">
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
</Attribute>
### definition
<Attribute id="qiskit.extensions.UnitaryGate.definition">
Return definition in terms of other basic gates.
</Attribute>
### duration
<Attribute id="qiskit.extensions.UnitaryGate.duration">
Get the duration.
</Attribute>
### label
<Attribute id="qiskit.extensions.UnitaryGate.label">
Return instruction label
**Return type**
`str`
</Attribute>
### name
<Attribute id="qiskit.extensions.UnitaryGate.name">
Return the name.
</Attribute>
### num\_clbits
<Attribute id="qiskit.extensions.UnitaryGate.num_clbits">
Return the number of clbits.
</Attribute>
### num\_qubits
<Attribute id="qiskit.extensions.UnitaryGate.num_qubits">
Return the number of qubits.
</Attribute>
### params
<Attribute id="qiskit.extensions.UnitaryGate.params">
return instruction params.
</Attribute>
### unit
<Attribute id="qiskit.extensions.UnitaryGate.unit">
Get the time unit of duration.
</Attribute>
</Class>