323 lines
12 KiB
Plaintext
323 lines
12 KiB
Plaintext
---
|
||
title: GSLS
|
||
description: API reference for qiskit.algorithms.optimizers.GSLS
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.algorithms.optimizers.GSLS
|
||
---
|
||
|
||
# GSLS
|
||
|
||
<Class id="qiskit.algorithms.optimizers.GSLS" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.23/qiskit/algorithms/optimizers/gsls.py" signature="GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50)" modifiers="class">
|
||
Bases: [`qiskit.algorithms.optimizers.optimizer.Optimizer`](qiskit.algorithms.optimizers.Optimizer "qiskit.algorithms.optimizers.optimizer.Optimizer")
|
||
|
||
Gaussian-smoothed Line Search.
|
||
|
||
An implementation of the line search algorithm described in [https://arxiv.org/pdf/1905.01332.pdf](https://arxiv.org/pdf/1905.01332.pdf), using gradient approximation based on Gaussian-smoothed samples on a sphere.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm\_globals (`qiskit.utils.algorithm_globals.random_seed = seed`).
|
||
</Admonition>
|
||
|
||
**Parameters**
|
||
|
||
* **maxiter** (`int`) – Maximum number of iterations.
|
||
* **max\_eval** (`int`) – Maximum number of evaluations.
|
||
* **disp** (`bool`) – Set to True to display convergence messages.
|
||
* **sampling\_radius** (`float`) – Sampling radius to determine gradient estimate.
|
||
* **sample\_size\_factor** (`int`) – The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.
|
||
* **initial\_step\_size** (`float`) – Initial step size for the descent algorithm.
|
||
* **min\_step\_size** (`float`) – Minimum step size for the descent algorithm.
|
||
* **step\_size\_multiplier** (`float`) – Step size reduction after unsuccessful steps, in the interval (0, 1).
|
||
* **armijo\_parameter** (`float`) – Armijo parameter for sufficient decrease criterion, in the interval (0, 1).
|
||
* **min\_gradient\_norm** (`float`) – If the gradient norm is below this threshold, the algorithm stops.
|
||
* **max\_failed\_rejection\_sampling** (`int`) – Maximum number of attempts to sample points within bounds.
|
||
|
||
## Methods
|
||
|
||
### get\_support\_level
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.get_support_level" signature="GSLS.get_support_level()">
|
||
Return support level dictionary.
|
||
|
||
**Return type**
|
||
|
||
`Dict`\[`str`, `int`]
|
||
|
||
**Returns**
|
||
|
||
A dictionary containing the support levels for different options.
|
||
</Function>
|
||
|
||
### gradient\_approximation
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.gradient_approximation" signature="GSLS.gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y)">
|
||
Construct gradient approximation from given sample.
|
||
|
||
**Parameters**
|
||
|
||
* **n** (`int`) – Dimension of the problem.
|
||
* **x** (`ndarray`) – Point around which the sample set was constructed.
|
||
* **x\_value** (`float`) – Objective function value at x.
|
||
* **directions** (`ndarray`) – Directions of the sample points wrt the central point x, as a 2D array.
|
||
* **sample\_set\_x** (`ndarray`) – x-coordinates of the sample set, one point per row, as a 2D array.
|
||
* **sample\_set\_y** (`ndarray`) – Objective function values of the points in sample\_set\_x, as a 1D array.
|
||
|
||
**Return type**
|
||
|
||
`ndarray`
|
||
|
||
**Returns**
|
||
|
||
Gradient approximation at x, as a 1D array.
|
||
</Function>
|
||
|
||
### gradient\_num\_diff
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.gradient_num_diff" signature="GSLS.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
|
||
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
|
||
|
||
**Parameters**
|
||
|
||
* **x\_center** (*ndarray*) – point around which we compute the gradient
|
||
* **f** (*func*) – the function of which the gradient is to be computed.
|
||
* **epsilon** (*float*) – the epsilon used in the numeric differentiation.
|
||
* **max\_evals\_grouped** (*int*) – max evals grouped, defaults to 1 (i.e. no batching).
|
||
|
||
**Returns**
|
||
|
||
the gradient computed
|
||
|
||
**Return type**
|
||
|
||
grad
|
||
</Function>
|
||
|
||
### ls\_optimize
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.ls_optimize" signature="GSLS.ls_optimize(n, obj_fun, initial_point, var_lb, var_ub)">
|
||
Run the line search optimization.
|
||
|
||
**Parameters**
|
||
|
||
* **n** (`int`) – Dimension of the problem.
|
||
* **obj\_fun** (`Callable`) – Objective function.
|
||
* **initial\_point** (`ndarray`) – Initial point.
|
||
* **var\_lb** (`ndarray`) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
|
||
* **var\_ub** (`ndarray`) – Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below.
|
||
|
||
**Return type**
|
||
|
||
`Tuple`\[`ndarray`, `float`, `int`, `float`]
|
||
|
||
**Returns**
|
||
|
||
Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.
|
||
|
||
**Raises**
|
||
|
||
**ValueError** – If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.
|
||
</Function>
|
||
|
||
### minimize
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.minimize" signature="GSLS.minimize(fun, x0, jac=None, bounds=None)">
|
||
Minimize the scalar function.
|
||
|
||
**Parameters**
|
||
|
||
* **fun** (`Callable`\[\[`Union`\[`float`, `ndarray`]], `float`]) – The scalar function to minimize.
|
||
* **x0** (`Union`\[`float`, `ndarray`]) – The initial point for the minimization.
|
||
* **jac** (`Optional`\[`Callable`\[\[`Union`\[`float`, `ndarray`]], `Union`\[`float`, `ndarray`]]]) – The gradient of the scalar function `fun`.
|
||
* **bounds** (`Optional`\[`List`\[`Tuple`\[`float`, `float`]]]) – Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
|
||
|
||
**Return type**
|
||
|
||
[`OptimizerResult`](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.optimizer.OptimizerResult")
|
||
|
||
**Returns**
|
||
|
||
The result of the optimization, containing e.g. the result as attribute `x`.
|
||
</Function>
|
||
|
||
### print\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.print_options" signature="GSLS.print_options()">
|
||
Print algorithm-specific options.
|
||
</Function>
|
||
|
||
### sample\_points
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.sample_points" signature="GSLS.sample_points(n, x, num_points)">
|
||
Sample `num_points` points around `x` on the `n`-sphere of specified radius.
|
||
|
||
The radius of the sphere is `self._options['sampling_radius']`.
|
||
|
||
**Parameters**
|
||
|
||
* **n** (`int`) – Dimension of the problem.
|
||
* **x** (`ndarray`) – Point around which the sample set is constructed.
|
||
* **num\_points** (`int`) – Number of points in the sample set.
|
||
|
||
**Return type**
|
||
|
||
`Tuple`\[`ndarray`, `ndarray`]
|
||
|
||
**Returns**
|
||
|
||
A tuple containing the sampling points and the directions.
|
||
</Function>
|
||
|
||
### sample\_set
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.sample_set" signature="GSLS.sample_set(n, x, var_lb, var_ub, num_points)">
|
||
Construct sample set of given size.
|
||
|
||
**Parameters**
|
||
|
||
* **n** (`int`) – Dimension of the problem.
|
||
* **x** (`ndarray`) – Point around which the sample set is constructed.
|
||
* **var\_lb** (`ndarray`) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
|
||
* **var\_ub** (`ndarray`) – Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above.
|
||
* **num\_points** (`int`) – Number of points in the sample set.
|
||
|
||
**Return type**
|
||
|
||
`Tuple`\[`ndarray`, `ndarray`]
|
||
|
||
**Returns**
|
||
|
||
Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.
|
||
|
||
**Raises**
|
||
|
||
**RuntimeError** – If not enough samples could be generated within the bounds.
|
||
</Function>
|
||
|
||
### set\_max\_evals\_grouped
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.set_max_evals_grouped" signature="GSLS.set_max_evals_grouped(limit)">
|
||
Set max evals grouped
|
||
</Function>
|
||
|
||
### set\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.set_options" signature="GSLS.set_options(**kwargs)">
|
||
Sets or updates values in the options dictionary.
|
||
|
||
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
|
||
|
||
**Parameters**
|
||
|
||
**kwargs** (*dict*) – options, given as name=value.
|
||
</Function>
|
||
|
||
### wrap\_function
|
||
|
||
<Function id="qiskit.algorithms.optimizers.GSLS.wrap_function" signature="GSLS.wrap_function(function, args)" modifiers="static">
|
||
Wrap the function to implicitly inject the args at the call of the function.
|
||
|
||
**Parameters**
|
||
|
||
* **function** (*func*) – the target function
|
||
* **args** (*tuple*) – the args to be injected
|
||
|
||
**Returns**
|
||
|
||
wrapper
|
||
|
||
**Return type**
|
||
|
||
function\_wrapper
|
||
</Function>
|
||
|
||
## Attributes
|
||
|
||
### bounds\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.bounds_support_level">
|
||
Returns bounds support level
|
||
</Attribute>
|
||
|
||
### gradient\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.gradient_support_level">
|
||
Returns gradient support level
|
||
</Attribute>
|
||
|
||
### initial\_point\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.initial_point_support_level">
|
||
Returns initial point support level
|
||
</Attribute>
|
||
|
||
### is\_bounds\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_ignored">
|
||
Returns is bounds ignored
|
||
</Attribute>
|
||
|
||
### is\_bounds\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_required">
|
||
Returns is bounds required
|
||
</Attribute>
|
||
|
||
### is\_bounds\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_supported">
|
||
Returns is bounds supported
|
||
</Attribute>
|
||
|
||
### is\_gradient\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_ignored">
|
||
Returns is gradient ignored
|
||
</Attribute>
|
||
|
||
### is\_gradient\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_required">
|
||
Returns is gradient required
|
||
</Attribute>
|
||
|
||
### is\_gradient\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_supported">
|
||
Returns is gradient supported
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_ignored">
|
||
Returns is initial point ignored
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_required">
|
||
Returns is initial point required
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_supported">
|
||
Returns is initial point supported
|
||
</Attribute>
|
||
|
||
### setting
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.setting">
|
||
Return setting
|
||
</Attribute>
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.GSLS.settings">
|
||
**Return type**
|
||
|
||
`Dict`\[`str`, `Any`]
|
||
</Attribute>
|
||
</Class>
|
||
|