qiskit-documentation/docs/api/qiskit/0.38/qiskit.algorithms.optimizer...

216 lines
7.9 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: TNC
description: API reference for qiskit.algorithms.optimizers.TNC
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.TNC
---
# TNC
<Class id="qiskit.algorithms.optimizers.TNC" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.21/qiskit/algorithms/optimizers/tnc.py" signature="TNC(maxiter=100, disp=False, accuracy=0, ftol=- 1, xtol=- 1, gtol=- 1, tol=None, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)" modifiers="class">
Bases: [`qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer`](qiskit.algorithms.optimizers.SciPyOptimizer "qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer")
Truncated Newton (TNC) optimizer.
TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the [`CG`](qiskit.algorithms.optimizers.CG "qiskit.algorithms.optimizers.CG") method as it wraps a C implementation and allows each variable to be given upper and lower bounds.
Uses scipy.optimize.minimize TNC For further detail, please refer to See [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html)
**Parameters**
* **maxiter** (`int`) Maximum number of function evaluation.
* **disp** (`bool`) Set to True to print convergence messages.
* **accuracy** (`float`) Relative precision for finite difference calculations. If \<= machine\_precision, set to sqrt(machine\_precision). Defaults to 0.
* **ftol** (`float`) Precision goal for the value of f in the stopping criterion. If ftol \< 0.0, ftol is set to 0.0 defaults to -1.
* **xtol** (`float`) Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol \< 0.0, xtol is set to sqrt(machine\_precision). Defaults to -1.
* **gtol** (`float`) Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol \< 0.0, gtol is set to 1e-2 \* sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.
* **tol** (`Optional`\[`float`]) Tolerance for termination.
* **eps** (`float`) Step size used for numerical approximation of the Jacobian.
* **options** (`Optional`\[`dict`]) A dictionary of solver options.
* **max\_evals\_grouped** (`int`) Max number of default gradient evaluations performed simultaneously.
* **kwargs** additional kwargs for scipy.optimize.minimize.
## Methods
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.TNC.get_support_level" signature="TNC.get_support_level()">
Return support level dictionary
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.TNC.gradient_num_diff" signature="TNC.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** (*float*) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** (*int*) max evals grouped
**Returns**
the gradient computed
**Return type**
grad
</Function>
### minimize
<Function id="qiskit.algorithms.optimizers.TNC.minimize" signature="TNC.minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (`Callable`\[\[`Union`\[`float`, `ndarray`]], `float`]) The scalar function to minimize.
* **x0** (`Union`\[`float`, `ndarray`]) The initial point for the minimization.
* **jac** (`Optional`\[`Callable`\[\[`Union`\[`float`, `ndarray`]], `Union`\[`float`, `ndarray`]]]) The gradient of the scalar function `fun`.
* **bounds** (`Optional`\[`List`\[`Tuple`\[`float`, `float`]]]) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Return type**
[`OptimizerResult`](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.optimizer.OptimizerResult")
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.TNC.print_options" signature="TNC.print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.TNC.set_max_evals_grouped" signature="TNC.set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.TNC.set_options" signature="TNC.set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** (*dict*) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.TNC.wrap_function" signature="TNC.wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** (*tuple*) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.TNC.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.TNC.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.TNC.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.TNC.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.TNC.settings">
**Return type**
`Dict`\[`str`, `Any`]
</Attribute>
</Class>