49 lines
1.7 KiB
Plaintext
49 lines
1.7 KiB
Plaintext
---
|
||
title: concurrence
|
||
description: API reference for qiskit.quantum_info.concurrence
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: function
|
||
python_api_name: qiskit.quantum_info.concurrence
|
||
---
|
||
|
||
# qiskit.quantum\_info.concurrence
|
||
|
||
<Function id="qiskit.quantum_info.concurrence" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.19/qiskit/quantum_info/states/measures.py" signature="concurrence(state)">
|
||
Calculate the concurrence of a quantum state.
|
||
|
||
The concurrence of a bipartite [`Statevector`](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector") $|\psi\rangle$ is given by
|
||
|
||
$$
|
||
C(|\psi\rangle) = \sqrt{2(1 - Tr[\rho_0^2])}
|
||
$$
|
||
|
||
where $\rho_0 = Tr_1[|\psi\rangle\!\langle\psi|]$ is the reduced state from by taking the [`partial_trace()`](qiskit.quantum_info.partial_trace "qiskit.quantum_info.partial_trace") of the input state.
|
||
|
||
For density matrices the concurrence is only defined for 2-qubit states, it is given by:
|
||
|
||
$$
|
||
C(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)
|
||
$$
|
||
|
||
where $\lambda _1 \ge \lambda _2 \ge \lambda _3 \ge \lambda _4$ are the ordered eigenvalues of the matrix $R=\sqrt{\sqrt{\rho }(Y\otimes Y)\overline{\rho}(Y\otimes Y)\sqrt{\rho}}$.
|
||
|
||
**Parameters**
|
||
|
||
**state** ([*Statevector*](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector") *or*[*DensityMatrix*](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")) – a 2-qubit quantum state.
|
||
|
||
**Returns**
|
||
|
||
The concurrence.
|
||
|
||
**Return type**
|
||
|
||
float
|
||
|
||
**Raises**
|
||
|
||
* **QiskitError** – if the input state is not a valid QuantumState.
|
||
* **QiskitError** – if input is not a bipartite QuantumState.
|
||
* **QiskitError** – if density matrix input is not a 2-qubit state.
|
||
</Function>
|
||
|