qiskit-documentation/docs/api/qiskit/0.33/qiskit.providers.aer.utils....

39 lines
1.8 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: approximate_noise_model
description: API reference for qiskit.providers.aer.utils.approximate_noise_model
in_page_toc_min_heading_level: 1
python_api_type: function
python_api_name: qiskit.providers.aer.utils.approximate_noise_model
---
# qiskit.providers.aer.utils.approximate\_noise\_model
<Function id="qiskit.providers.aer.utils.approximate_noise_model" isDedicatedPage={true} github="https://github.com/qiskit/qiskit-aer/tree/stable/0.9/qiskit/providers/aer/utils/noise_transformation.py" signature="approximate_noise_model(model, *, operator_string=None, operator_dict=None, operator_list=None)">
Return an approximate noise model.
**Parameters**
* **model** ([*NoiseModel*](qiskit.providers.aer.noise.NoiseModel "qiskit.providers.aer.noise.NoiseModel")) the noise model to be approximated.
* **operator\_string** (*string or None*) a name for a pre-made set of building blocks for the output channel (Default: None).
* **operator\_dict** (*dict or None*) a dictionary whose values are the building blocks for the output channel (Default: None).
* **operator\_list** (*dict or None*) list of building blocks for the output channel (Default: None).
**Returns**
the approximate noise model.
**Return type**
[NoiseModel](qiskit.providers.aer.noise.NoiseModel "qiskit.providers.aer.noise.NoiseModel")
**Raises**
* **NoiseError** if number of qubits is not supported or approximation
* **failed.**
## Additional Information:
The operator input precedence is: `list` \< `dict` \< `str`. If a string is given, dict is overwritten; if a dict is given, list is overwritten. Oossible values for string are `'pauli'`, `'reset'`, `'clifford'`. For further information see `NoiseTransformer.named_operators()`.
</Function>