qiskit-documentation/docs/api/qiskit/0.31/qiskit.circuit.classicalfun...

450 lines
13 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: ClassicalFunction
description: API reference for qiskit.circuit.classicalfunction.ClassicalFunction
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.classicalfunction.ClassicalFunction
---
# ClassicalFunction
<Class id="qiskit.circuit.classicalfunction.ClassicalFunction" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/circuit/classicalfunction/classicalfunction.py" signature="ClassicalFunction(source, name=None)" modifiers="class">
Bases: `qiskit.circuit.classicalfunction.classical_element.ClassicalElement`
Represent a classical function function and its logic network.
Creates a `ClassicalFunction` from Python source code in `source`.
The code should be a single function with types.
**Parameters**
* **source** (*str*) Python code with type hints.
* **name** (*str*) Optional. Default: “*classicalfunction*”. ClassicalFunction name.
**Raises**
**QiskitError** If source is not a string.
## Methods
### add\_decomposition
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.add_decomposition" signature="ClassicalFunction.add_decomposition(decomposition)">
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
</Function>
### assemble
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.assemble" signature="ClassicalFunction.assemble()">
Assemble a QasmQobjInstruction
</Function>
### broadcast\_arguments
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.broadcast_arguments" signature="ClassicalFunction.broadcast_arguments(qargs, cargs)">
Validation and handling of the arguments and its relationship.
For example, `cx([q[0],q[1]], q[2])` means `cx(q[0], q[2]); cx(q[1], q[2])`. This method yields the arguments in the right grouping. In the given example:
```python
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
```
The general broadcasting rules are:
> * If len(qargs) == 1:
>
> ```python
> [q[0], q[1]] -> [q[0]],[q[1]]
> ```
>
> * If len(qargs) == 2:
>
> ```python
> [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
> [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]]
> [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
> ```
>
> * If len(qargs) >= 3:
>
> ```python
> [q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
> ```
**Parameters**
* **qargs** (`List`) List of quantum bit arguments.
* **cargs** (`List`) List of classical bit arguments.
**Return type**
`Tuple`\[`List`, `List`]
**Returns**
A tuple with single arguments.
**Raises**
**CircuitError** If the input is not valid. For example, the number of arguments does not match the gate expectation.
</Function>
### c\_if
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.c_if" signature="ClassicalFunction.c_if(classical, val)">
Add classical condition on register or cbit classical and value val.
</Function>
### compile
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.compile" signature="ClassicalFunction.compile()">
Parses and creates the logical circuit
</Function>
### control
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.control" signature="ClassicalFunction.control(num_ctrl_qubits=1, label=None, ctrl_state=None)">
Return controlled version of gate. See [`ControlledGate`](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate") for usage.
**Parameters**
* **num\_ctrl\_qubits** (`Optional`\[`int`]) number of controls to add to gate (default=1)
* **label** (`Optional`\[`str`]) optional gate label
* **ctrl\_state** (`Union`\[`int`, `str`, `None`]) The control state in decimal or as a bitstring (e.g. 111). If None, use 2\*\*num\_ctrl\_qubits-1.
**Returns**
Controlled version of gate. This default algorithm uses num\_ctrl\_qubits-1 ancillae qubits so returns a gate of size num\_qubits + 2\*num\_ctrl\_qubits - 1.
**Return type**
[qiskit.circuit.ControlledGate](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate")
**Raises**
**QiskitError** unrecognized mode or invalid ctrl\_state
</Function>
### copy
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.copy" signature="ClassicalFunction.copy(name=None)">
Copy of the instruction.
**Parameters**
**name** (*str*) name to be given to the copied circuit, if None then the name stays the same.
**Returns**
**a copy of the current instruction, with the name**
updated if it was provided
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### inverse
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.inverse" signature="ClassicalFunction.inverse()">
Invert this instruction.
If the instruction is composite (i.e. has a definition), then its definition will be recursively inverted.
Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.)
**Returns**
a fresh instruction for the inverse
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
**CircuitError** if the instruction is not composite and an inverse has not been implemented for it.
</Function>
### is\_parameterized
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.is_parameterized" signature="ClassicalFunction.is_parameterized()">
Return True .IFF. instruction is parameterized else False
</Function>
### mirror
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.mirror" signature="ClassicalFunction.mirror()">
DEPRECATED: use instruction.reverse\_ops().
**Returns**
**a new instruction with sub-instructions**
reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### power
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.power" signature="ClassicalFunction.power(exponent)">
Creates a unitary gate as gate^exponent.
**Parameters**
**exponent** (*float*) Gate^exponent
**Returns**
To which to\_matrix is self.to\_matrix^exponent.
**Return type**
[qiskit.extensions.UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
**Raises**
**CircuitError** If Gate is not unitary
</Function>
### qasm
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.qasm" signature="ClassicalFunction.qasm()">
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q\[0] -> c\[0];).
</Function>
### repeat
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.repeat" signature="ClassicalFunction.repeat(n)">
Creates an instruction with gate repeated n amount of times.
**Parameters**
**n** (*int*) Number of times to repeat the instruction
**Returns**
Containing the definition.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
**CircuitError** If n \< 1.
</Function>
### reverse\_ops
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.reverse_ops" signature="ClassicalFunction.reverse_ops()">
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
**Returns**
**a new instruction with**
sub-instructions reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### simulate
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.simulate" signature="ClassicalFunction.simulate(bitstring)">
Evaluate the expression on a bitstring.
This evaluation is done classically.
**Parameters**
**bitstring** (`str`) The bitstring for which to evaluate.
**Returns**
result of the evaluation.
**Return type**
bool
</Function>
### simulate\_all
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.simulate_all" signature="ClassicalFunction.simulate_all()">
Returns a truth table.
**Returns**
a bitstring with a truth table
**Return type**
str
</Function>
### soft\_compare
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.soft_compare" signature="ClassicalFunction.soft_compare(other)">
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
**Parameters**
**other** (*instruction*) other instruction.
**Returns**
are self and other equal up to parameter expressions.
**Return type**
bool
</Function>
### synth
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.synth" signature="ClassicalFunction.synth(registerless=True, synthesizer=None)">
Synthesis the logic network into a [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit").
**Parameters**
* **registerless** (`bool`) Default `True`. If `False` uses the parameter names to create
* **with those names. Otherwise** (*registers*)
* **a circuit with a flat quantum register.** (*creates*)
* **synthesizer** (`Optional`\[`Callable`\[\[`ClassicalElement`], `QuantumCircuit`]]) Optional. If None tweedledums pkrm\_synth is used.
**Returns**
A circuit implementing the logic network.
**Return type**
[QuantumCircuit](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")
</Function>
### to\_matrix
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.to_matrix" signature="ClassicalFunction.to_matrix()">
Return a Numpy.array for the gate unitary matrix.
**Returns**
if the Gate subclass has a matrix definition.
**Return type**
np.ndarray
**Raises**
**CircuitError** If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
</Function>
### validate\_parameter
<Function id="qiskit.circuit.classicalfunction.ClassicalFunction.validate_parameter" signature="ClassicalFunction.validate_parameter(parameter)">
Gate parameters should be int, float, or ParameterExpression
</Function>
## Attributes
### args
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.args">
Returns the classicalfunction arguments
</Attribute>
### decompositions
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.decompositions">
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
</Attribute>
### definition
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.definition">
Return definition in terms of other basic gates.
</Attribute>
### duration
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.duration">
Get the duration.
</Attribute>
### label
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.label">
Return instruction label
**Return type**
`str`
</Attribute>
### network
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.network">
Returns the logical network
</Attribute>
### params
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.params">
return instruction params.
</Attribute>
### qregs
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.qregs">
The list of qregs used by the classicalfunction
</Attribute>
### scopes
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.scopes">
Returns the scope dict
</Attribute>
### truth\_table
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.truth_table">
Returns (and computes) the truth table
</Attribute>
### types
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.types">
Dumps a list of scopes with their variables and types.
**Returns**
A list of scopes as dicts, where key is the variable name and value is its type.
**Return type**
list(dict)
</Attribute>
### unit
<Attribute id="qiskit.circuit.classicalfunction.ClassicalFunction.unit">
Get the time unit of duration.
</Attribute>
</Class>