qiskit-documentation/docs/api/qiskit/0.30/qiskit.optimization.convert...

83 lines
2.6 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: LinearEqualityToPenalty
description: API reference for qiskit.optimization.converters.LinearEqualityToPenalty
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.optimization.converters.LinearEqualityToPenalty
---
# LinearEqualityToPenalty
<Class id="qiskit.optimization.converters.LinearEqualityToPenalty" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/optimization/converters/linear_equality_to_penalty.py" signature="LinearEqualityToPenalty(penalty=None)" modifiers="class">
Bases: `qiskit.optimization.converters.quadratic_program_converter.QuadraticProgramConverter`
Convert a problem with only equality constraints to unconstrained with penalty terms.
**Parameters**
**penalty** (`Optional`\[`float`]) Penalty factor to scale equality constraints that are added to objective. If None is passed, penalty factor will be automatically calculated.
## Methods
### convert
<Function id="qiskit.optimization.converters.LinearEqualityToPenalty.convert" signature="LinearEqualityToPenalty.convert(problem)">
Convert a problem with equality constraints into an unconstrained problem.
**Parameters**
**problem** (`QuadraticProgram`) The problem to be solved, that does not contain inequality constraints.
**Return type**
`QuadraticProgram`
**Returns**
The converted problem, that is an unconstrained problem.
**Raises**
[**QiskitOptimizationError**](qiskit.optimization.QiskitOptimizationError "qiskit.optimization.QiskitOptimizationError") If an inequality constraint exists.
</Function>
### interpret
<Function id="qiskit.optimization.converters.LinearEqualityToPenalty.interpret" signature="LinearEqualityToPenalty.interpret(x)">
Convert the result of the converted problem back to that of the original problem
**Parameters**
**x** (`Union`\[`ndarray`, `List`\[`float`]]) The result of the converted problem or the given result in case of FAILURE.
**Return type**
`ndarray`
**Returns**
The result of the original problem.
**Raises**
[**QiskitOptimizationError**](qiskit.optimization.QiskitOptimizationError "qiskit.optimization.QiskitOptimizationError") if the number of variables in the result differs from that of the original problem.
</Function>
## Attributes
### penalty
<Attribute id="qiskit.optimization.converters.LinearEqualityToPenalty.penalty">
Returns the penalty factor used in conversion.
**Return type**
`Optional`\[`float`]
**Returns**
The penalty factor used in conversion.
</Attribute>
</Class>