qiskit-documentation/docs/api/qiskit/0.27/qiskit.quantum_info.ScalarO...

300 lines
14 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: ScalarOp
description: API reference for qiskit.quantum_info.ScalarOp
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.quantum_info.ScalarOp
---
# qiskit.quantum\_info.ScalarOp
<Class id="qiskit.quantum_info.ScalarOp" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.17/qiskit/quantum_info/operators/scalar_op.py" signature="ScalarOp(dims=None, coeff=1)" modifiers="class">
Scalar identity operator class.
This is a symbolic representation of an scalar identity operator on multiple subsystems. It may be used to initialize a symbolic scalar multiplication of an identity and then be implicitly converted to other kinds of operator subclasses by using the [`compose()`](#qiskit.quantum_info.ScalarOp.compose "qiskit.quantum_info.ScalarOp.compose"), [`dot()`](#qiskit.quantum_info.ScalarOp.dot "qiskit.quantum_info.ScalarOp.dot"), [`tensor()`](#qiskit.quantum_info.ScalarOp.tensor "qiskit.quantum_info.ScalarOp.tensor"), [`expand()`](#qiskit.quantum_info.ScalarOp.expand "qiskit.quantum_info.ScalarOp.expand") methods.
Initialize an operator object.
**Parameters**
* **dims** (*int or tuple*) subsystem dimensions.
* **coeff** (*Number*) scalar coefficient for the identity operator (Default: 1).
**Raises**
**QiskitError** If the optional coefficient is invalid.
### \_\_init\_\_
<Function id="qiskit.quantum_info.ScalarOp.__init__" signature="__init__(dims=None, coeff=1)">
Initialize an operator object.
**Parameters**
* **dims** (*int or tuple*) subsystem dimensions.
* **coeff** (*Number*) scalar coefficient for the identity operator (Default: 1).
**Raises**
**QiskitError** If the optional coefficient is invalid.
</Function>
## Methods
| | |
| ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------- |
| [`__init__`](#qiskit.quantum_info.ScalarOp.__init__ "qiskit.quantum_info.ScalarOp.__init__")(\[dims, coeff]) | Initialize an operator object. |
| [`adjoint`](#qiskit.quantum_info.ScalarOp.adjoint "qiskit.quantum_info.ScalarOp.adjoint")() | Return the adjoint of the Operator. |
| [`compose`](#qiskit.quantum_info.ScalarOp.compose "qiskit.quantum_info.ScalarOp.compose")(other\[, qargs, front]) | Return the operator composition with another ScalarOp. |
| [`conjugate`](#qiskit.quantum_info.ScalarOp.conjugate "qiskit.quantum_info.ScalarOp.conjugate")() | Return the conjugate of the ScalarOp. |
| [`copy`](#qiskit.quantum_info.ScalarOp.copy "qiskit.quantum_info.ScalarOp.copy")() | Make a deep copy of current operator. |
| [`dot`](#qiskit.quantum_info.ScalarOp.dot "qiskit.quantum_info.ScalarOp.dot")(other\[, qargs]) | Return the right multiplied operator self \* other. |
| [`expand`](#qiskit.quantum_info.ScalarOp.expand "qiskit.quantum_info.ScalarOp.expand")(other) | Return the reverse-order tensor product with another ScalarOp. |
| [`input_dims`](#qiskit.quantum_info.ScalarOp.input_dims "qiskit.quantum_info.ScalarOp.input_dims")(\[qargs]) | Return tuple of input dimension for specified subsystems. |
| [`is_unitary`](#qiskit.quantum_info.ScalarOp.is_unitary "qiskit.quantum_info.ScalarOp.is_unitary")(\[atol, rtol]) | Return True if operator is a unitary matrix. |
| [`output_dims`](#qiskit.quantum_info.ScalarOp.output_dims "qiskit.quantum_info.ScalarOp.output_dims")(\[qargs]) | Return tuple of output dimension for specified subsystems. |
| [`power`](#qiskit.quantum_info.ScalarOp.power "qiskit.quantum_info.ScalarOp.power")(n) | Return the power of the ScalarOp. |
| [`reshape`](#qiskit.quantum_info.ScalarOp.reshape "qiskit.quantum_info.ScalarOp.reshape")(\[input\_dims, output\_dims, num\_qubits]) | Return a shallow copy with reshaped input and output subsystem dimensions. |
| [`tensor`](#qiskit.quantum_info.ScalarOp.tensor "qiskit.quantum_info.ScalarOp.tensor")(other) | Return the tensor product with another ScalarOp. |
| [`to_matrix`](#qiskit.quantum_info.ScalarOp.to_matrix "qiskit.quantum_info.ScalarOp.to_matrix")() | Convert to a Numpy matrix. |
| [`to_operator`](#qiskit.quantum_info.ScalarOp.to_operator "qiskit.quantum_info.ScalarOp.to_operator")() | Convert to an Operator object. |
| [`transpose`](#qiskit.quantum_info.ScalarOp.transpose "qiskit.quantum_info.ScalarOp.transpose")() | Return the transpose of the ScalarOp. |
## Attributes
| | |
| -------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------- |
| [`atol`](#qiskit.quantum_info.ScalarOp.atol "qiskit.quantum_info.ScalarOp.atol") | Default absolute tolerance parameter for float comparisons. |
| [`coeff`](#qiskit.quantum_info.ScalarOp.coeff "qiskit.quantum_info.ScalarOp.coeff") | Return the coefficient |
| [`dim`](#qiskit.quantum_info.ScalarOp.dim "qiskit.quantum_info.ScalarOp.dim") | Return tuple (input\_shape, output\_shape). |
| [`num_qubits`](#qiskit.quantum_info.ScalarOp.num_qubits "qiskit.quantum_info.ScalarOp.num_qubits") | Return the number of qubits if a N-qubit operator or None otherwise. |
| [`qargs`](#qiskit.quantum_info.ScalarOp.qargs "qiskit.quantum_info.ScalarOp.qargs") | Return the qargs for the operator. |
| [`rtol`](#qiskit.quantum_info.ScalarOp.rtol "qiskit.quantum_info.ScalarOp.rtol") | Default relative tolerance parameter for float comparisons. |
### adjoint
<Function id="qiskit.quantum_info.ScalarOp.adjoint" signature="adjoint()">
Return the adjoint of the Operator.
</Function>
### atol
<Attribute id="qiskit.quantum_info.ScalarOp.atol">
Default absolute tolerance parameter for float comparisons.
</Attribute>
### coeff
<Attribute id="qiskit.quantum_info.ScalarOp.coeff">
Return the coefficient
</Attribute>
### compose
<Function id="qiskit.quantum_info.ScalarOp.compose" signature="compose(other, qargs=None, front=False)">
Return the operator composition with another ScalarOp.
**Parameters**
* **other** ([*ScalarOp*](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")) a ScalarOp object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
* **front** (*bool*) If True compose using right operator multiplication, instead of left multiplication \[default: False].
**Returns**
The composed ScalarOp.
**Return type**
[ScalarOp](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")
**Raises**
**QiskitError** if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
<Admonition title="Note" type="note">
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while [`dot()`](#qiskit.quantum_info.ScalarOp.dot "qiskit.quantum_info.ScalarOp.dot") is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B.dot(A)` when `A` and `B` are of the same type.
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](#qiskit.quantum_info.ScalarOp.dot "qiskit.quantum_info.ScalarOp.dot") method `A.dot(B) == A.compose(B, front=True)`.
</Admonition>
</Function>
### conjugate
<Function id="qiskit.quantum_info.ScalarOp.conjugate" signature="conjugate()">
Return the conjugate of the ScalarOp.
</Function>
### copy
<Function id="qiskit.quantum_info.ScalarOp.copy" signature="copy()">
Make a deep copy of current operator.
</Function>
### dim
<Attribute id="qiskit.quantum_info.ScalarOp.dim">
Return tuple (input\_shape, output\_shape).
</Attribute>
### dot
<Function id="qiskit.quantum_info.ScalarOp.dot" signature="dot(other, qargs=None)">
Return the right multiplied operator self \* other.
**Parameters**
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) an operator object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
**Returns**
The right matrix multiplied Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
</Function>
### expand
<Function id="qiskit.quantum_info.ScalarOp.expand" signature="expand(other)">
Return the reverse-order tensor product with another ScalarOp.
**Parameters**
**other** ([*ScalarOp*](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")) a ScalarOp object.
**Returns**
**the tensor product $b \otimes a$, where $a$**
is the current ScalarOp, and $b$ is the other ScalarOp.
**Return type**
[ScalarOp](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")
</Function>
### input\_dims
<Function id="qiskit.quantum_info.ScalarOp.input_dims" signature="input_dims(qargs=None)">
Return tuple of input dimension for specified subsystems.
</Function>
### is\_unitary
<Function id="qiskit.quantum_info.ScalarOp.is_unitary" signature="is_unitary(atol=None, rtol=None)">
Return True if operator is a unitary matrix.
</Function>
### num\_qubits
<Attribute id="qiskit.quantum_info.ScalarOp.num_qubits">
Return the number of qubits if a N-qubit operator or None otherwise.
</Attribute>
### output\_dims
<Function id="qiskit.quantum_info.ScalarOp.output_dims" signature="output_dims(qargs=None)">
Return tuple of output dimension for specified subsystems.
</Function>
### power
<Function id="qiskit.quantum_info.ScalarOp.power" signature="power(n)">
Return the power of the ScalarOp.
**Parameters**
**n** (*float*) the exponent for the scalar op.
**Returns**
the `coeff ** n` ScalarOp.
**Return type**
[ScalarOp](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")
</Function>
### qargs
<Attribute id="qiskit.quantum_info.ScalarOp.qargs">
Return the qargs for the operator.
</Attribute>
### reshape
<Function id="qiskit.quantum_info.ScalarOp.reshape" signature="reshape(input_dims=None, output_dims=None, num_qubits=None)">
Return a shallow copy with reshaped input and output subsystem dimensions.
**Parameters**
* **input\_dims** (*None or tuple*) new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
* **output\_dims** (*None or tuple*) new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
* **num\_qubits** (*None or int*) reshape to an N-qubit operator \[Default: None].
**Returns**
returns self with reshaped input and output dimensions.
**Return type**
BaseOperator
**Raises**
**QiskitError** if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
</Function>
### rtol
<Attribute id="qiskit.quantum_info.ScalarOp.rtol">
Default relative tolerance parameter for float comparisons.
</Attribute>
### tensor
<Function id="qiskit.quantum_info.ScalarOp.tensor" signature="tensor(other)">
Return the tensor product with another ScalarOp.
**Parameters**
**other** ([*ScalarOp*](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")) a ScalarOp object.
**Returns**
**the tensor product $a \otimes b$, where $a$**
is the current ScalarOp, and $b$ is the other ScalarOp.
**Return type**
[ScalarOp](#qiskit.quantum_info.ScalarOp "qiskit.quantum_info.ScalarOp")
<Admonition title="Note" type="note">
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
</Admonition>
</Function>
### to\_matrix
<Function id="qiskit.quantum_info.ScalarOp.to_matrix" signature="to_matrix()">
Convert to a Numpy matrix.
</Function>
### to\_operator
<Function id="qiskit.quantum_info.ScalarOp.to_operator" signature="to_operator()">
Convert to an Operator object.
</Function>
### transpose
<Function id="qiskit.quantum_info.ScalarOp.transpose" signature="transpose()">
Return the transpose of the ScalarOp.
</Function>
</Class>