qiskit-documentation/docs/api/qiskit/0.26/qiskit.aqua.operators.gradi...

160 lines
9.2 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: NaturalGradient
description: API reference for qiskit.aqua.operators.gradients.NaturalGradient
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.aqua.operators.gradients.NaturalGradient
---
# qiskit.aqua.operators.gradients.NaturalGradient
<Class id="qiskit.aqua.operators.gradients.NaturalGradient" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/aqua/operators/gradients/natural_gradient.py" signature="NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)" modifiers="class">
Convert an operator expression to the first-order gradient.
Given an ill-posed inverse problem
> x = arg min\{||Ax-C||^2} (1)
one can use regularization schemes can be used to stabilize the system and find a numerical solution
> x\_lambda = arg min\{||Ax-C||^2 + lambda\*R(x)} (2)
where R(x) represents the penalization term.
**Parameters**
* **grad\_method** (`Union`\[`str`, `CircuitGradient`]) The method used to compute the state gradient. Can be either `'param_shift'` or `'lin_comb'` or `'fin_diff'`.
* **qfi\_method** (`Union`\[`str`, `CircuitQFI`]) The method used to compute the QFI. Can be either `'lin_comb_full'` or `'overlap_block_diag'` or `'overlap_diag'`.
* **regularization** (`Optional`\[`str`]) Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or `'ridge'` or `'lasso'` or `'perturb_diag'` `'ridge'` and `'lasso'` use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization
* **kwargs** (*dict*) Optional parameters for a CircuitGradient
### \_\_init\_\_
<Function id="qiskit.aqua.operators.gradients.NaturalGradient.__init__" signature="__init__(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)">
**Parameters**
* **grad\_method** (`Union`\[`str`, `CircuitGradient`]) The method used to compute the state gradient. Can be either `'param_shift'` or `'lin_comb'` or `'fin_diff'`.
* **qfi\_method** (`Union`\[`str`, `CircuitQFI`]) The method used to compute the QFI. Can be either `'lin_comb_full'` or `'overlap_block_diag'` or `'overlap_diag'`.
* **regularization** (`Optional`\[`str`]) Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or `'ridge'` or `'lasso'` or `'perturb_diag'` `'ridge'` and `'lasso'` use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization
* **kwargs** (*dict*) Optional parameters for a CircuitGradient
</Function>
## Methods
| | |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
| [`__init__`](#qiskit.aqua.operators.gradients.NaturalGradient.__init__ "qiskit.aqua.operators.gradients.NaturalGradient.__init__")(\[grad\_method, qfi\_method, …]) | **type grad\_method**`Union`\[`str`, `CircuitGradient`] |
| [`convert`](#qiskit.aqua.operators.gradients.NaturalGradient.convert "qiskit.aqua.operators.gradients.NaturalGradient.convert")(operator\[, params]) | **type operator**`OperatorBase` |
| [`gradient_wrapper`](#qiskit.aqua.operators.gradients.NaturalGradient.gradient_wrapper "qiskit.aqua.operators.gradients.NaturalGradient.gradient_wrapper")(operator, bind\_params\[, …]) | Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. |
| [`parameter_expression_grad`](#qiskit.aqua.operators.gradients.NaturalGradient.parameter_expression_grad "qiskit.aqua.operators.gradients.NaturalGradient.parameter_expression_grad")(param\_expr, param) | Get the derivative of a parameter expression w\.r.t. |
## Attributes
| | |
| ---------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- |
| [`grad_method`](#qiskit.aqua.operators.gradients.NaturalGradient.grad_method "qiskit.aqua.operators.gradients.NaturalGradient.grad_method") | Returns `CircuitGradient`. |
| [`qfi_method`](#qiskit.aqua.operators.gradients.NaturalGradient.qfi_method "qiskit.aqua.operators.gradients.NaturalGradient.qfi_method") | Returns `CircuitQFI`. |
| [`regularization`](#qiskit.aqua.operators.gradients.NaturalGradient.regularization "qiskit.aqua.operators.gradients.NaturalGradient.regularization") | Returns the regularization option. |
### convert
<Function id="qiskit.aqua.operators.gradients.NaturalGradient.convert" signature="convert(operator, params=None)">
**Parameters**
* **operator** (`OperatorBase`) The operator we are taking the gradient of.
* **params** (`Union`\[`ParameterVector`, `ParameterExpression`, `List`\[`ParameterExpression`], `None`]) The parameters we are taking the gradient with respect to.
**Return type**
`OperatorBase`
**Returns**
An operator whose evaluation yields the NaturalGradient.
**Raises**
* **TypeError** If `operator` does not represent an expectation value or the quantum state is not `CircuitStateFn`.
* **ValueError** If `params` contains a parameter not present in `operator`.
</Function>
### grad\_method
<Attribute id="qiskit.aqua.operators.gradients.NaturalGradient.grad_method">
Returns `CircuitGradient`.
**Return type**
`CircuitGradient`
**Returns**
`CircuitGradient`.
</Attribute>
### gradient\_wrapper
<Function id="qiskit.aqua.operators.gradients.NaturalGradient.gradient_wrapper" signature="gradient_wrapper(operator, bind_params, grad_params=None, backend=None)">
Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
**Parameters**
* **operator** (`OperatorBase`) The operator for which we want to get the gradient, Hessian or QFI.
* **bind\_params** (`Union`\[`ParameterExpression`, `ParameterVector`, `List`\[`ParameterExpression`]]) The operator parameters to which the parameter values are assigned.
* **grad\_params** (`Union`\[`ParameterExpression`, `ParameterVector`, `List`\[`ParameterExpression`], `Tuple`\[`ParameterExpression`, `ParameterExpression`], `List`\[`Tuple`\[`ParameterExpression`, `ParameterExpression`]], `None`]) The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad\_params = None, then grad\_params = bind\_params
* **backend** (`Union`\[`BaseBackend`, `QuantumInstance`, `None`]) The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
**Returns**
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
**Return type**
callable(param\_values)
</Function>
### parameter\_expression\_grad
<Function id="qiskit.aqua.operators.gradients.NaturalGradient.parameter_expression_grad" signature="parameter_expression_grad(param_expr, param)" modifiers="static">
Get the derivative of a parameter expression w\.r.t. the given parameter.
**Parameters**
* **param\_expr** (`ParameterExpression`) The Parameter Expression for which we compute the derivative
* **param** (`ParameterExpression`) Parameter w\.r.t. which we want to take the derivative
**Return type**
`Union`\[`ParameterExpression`, `float`]
**Returns**
ParameterExpression representing the gradient of param\_expr w\.r.t. param
</Function>
### qfi\_method
<Attribute id="qiskit.aqua.operators.gradients.NaturalGradient.qfi_method">
Returns `CircuitQFI`.
Returns: `CircuitQFI`
**Return type**
`CircuitQFI`
</Attribute>
### regularization
<Attribute id="qiskit.aqua.operators.gradients.NaturalGradient.regularization">
Returns the regularization option.
Returns: the regularization option.
**Return type**
`Optional`\[`str`]
</Attribute>
</Class>