qiskit-documentation/docs/api/qiskit/0.24/qiskit.quantum_info.concurr...

51 lines
1.7 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: concurrence
description: API reference for qiskit.quantum_info.concurrence
in_page_toc_min_heading_level: 1
python_api_type: function
python_api_name: qiskit.quantum_info.concurrence
---
<span id="qiskit-quantum-info-concurrence" />
# qiskit.quantum\_info.concurrence
<Function id="qiskit.quantum_info.concurrence" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.16/qiskit/quantum_info/states/measures.py" signature="concurrence(state)">
Calculate the concurrence of a quantum state.
The concurrence of a bipartite [`Statevector`](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector") $|\psi\rangle$ is given by
$$
C(|\psi\rangle) = \sqrt{2(1 - Tr[\rho_0^2])}
$$
where $\rho_0 = Tr_1[|\psi\rangle\!\langle\psi|]$ is the reduced state from by taking the $~qiskit.quantum_info.partial_trace$ of the input state.
For density matrices the concurrence is only defined for 2-qubit states, it is given by:
$$
C(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)
$$
where $\lambda _1 \ge \lambda _2 \ge \lambda _3 \ge \lambda _4$ are the ordered eigenvalues of the matrix $R=\sqrt{\sqrt{\rho }(Y\otimes Y)\overline{\rho}(Y\otimes Y)\sqrt{\rho}}$.
**Parameters**
**state** ([*Statevector*](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector") *or*[*DensityMatrix*](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix")) a 2-qubit quantum state.
**Returns**
The concurrence.
**Return type**
float
**Raises**
* **QiskitError** if the input state is not a valid QuantumState.
* **QiskitError** if input is not a bipartite QuantumState.
* **QiskitError** if density matrix input is not a 2-qubit state.
</Function>