qiskit-aer/test/terra/primitives/test_estimator.py

333 lines
14 KiB
Python

# This code is part of Qiskit.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Estimator class tests
"""
import unittest
from test.terra.common import QiskitAerTestCase
import numpy as np
from ddt import data, ddt
import qiskit
from qiskit.circuit import Parameter, QuantumCircuit
from qiskit.circuit.library import RealAmplitudes
from qiskit.exceptions import QiskitError
from qiskit.primitives import EstimatorResult
from qiskit.quantum_info import Operator, SparsePauliOp
from qiskit_aer.primitives import Estimator
@ddt
class TestEstimator(QiskitAerTestCase):
"""Testing estimator class"""
def setUp(self):
super().setUp()
self.ansatz = RealAmplitudes(num_qubits=2, reps=2)
self.observable = SparsePauliOp.from_list(
[
("II", -1.052373245772859),
("IZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
self.expval = -1.284366511861733
self.expval_rev = -0.5140997668602956
@data(True, False)
def test_estimator(self, abelian_grouping):
"""test for a simple use case"""
lst = [("XX", 1), ("YY", 2), ("ZZ", 3)]
with self.subTest("SparsePauliOp"):
observable = SparsePauliOp.from_list(lst)
ansatz = RealAmplitudes(num_qubits=2, reps=2)
with self.assertWarns(DeprecationWarning):
est = Estimator(
backend_options={"method": "statevector"}, abelian_grouping=abelian_grouping
)
result = est.run(
ansatz, observable, parameter_values=[[0, 1, 1, 2, 3, 5]], seed=15
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1.728515625])
with self.subTest("SparsePauliOp with another grouping"):
observable = SparsePauliOp.from_list(
[
("YZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
ansatz = RealAmplitudes(num_qubits=2, reps=2)
with self.assertWarns(DeprecationWarning):
est = Estimator(
backend_options={"method": "statevector"}, abelian_grouping=abelian_grouping
)
result = est.run(ansatz, observable, parameter_values=[[0] * 6], seed=15).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-0.4], rtol=0.02)
@data(True, False)
@unittest.skipUnless(
qiskit.__version__.startswith("0."),
reason="Operator support in primitives was removed following Qiskit 0.46",
)
def test_init_observable_from_operator(self, abelian_grouping):
"""test for evaluate without parameters"""
circuit = self.ansatz.assign_parameters([0, 1, 1, 2, 3, 5])
matrix = Operator(
[
[-1.06365335, 0.0, 0.0, 0.1809312],
[0.0, -1.83696799, 0.1809312, 0.0],
[0.0, 0.1809312, -0.24521829, 0.0],
[0.1809312, 0.0, 0.0, -1.06365335],
]
)
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
result = est.run([circuit], [matrix], seed=15, shots=8192).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [self.expval], rtol=0.02)
@data(True, False)
def test_evaluate(self, abelian_grouping):
"""test for evaluate"""
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
result = est.run(
self.ansatz, self.observable, parameter_values=[[0, 1, 1, 2, 3, 5]], seed=15, shots=8192
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [self.expval], rtol=0.02)
@data(True, False)
def test_evaluate_multi_params(self, abelian_grouping):
"""test for evaluate with multiple parameters"""
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
result = est.run(
[self.ansatz] * 2,
[self.observable] * 2,
parameter_values=[[0, 1, 1, 2, 3, 5], [5, 3, 2, 1, 1, 0]],
seed=15,
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [self.expval, self.expval_rev], rtol=0.02)
@data(True, False)
def test_evaluate_no_params(self, abelian_grouping):
"""test for evaluate without parameters"""
circuit = self.ansatz.assign_parameters([0, 1, 1, 2, 3, 5])
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
result = est.run(circuit, self.observable, seed=15, shots=8192).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [self.expval], rtol=0.02)
@data(True, False)
def test_run_with_multiple_observables_and_none_parameters(self, abelian_grouping):
"""test for evaluate without parameters"""
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
# Skip transpilation until solve qiskit-terra issue(10568)
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping, skip_transpilation=True)
result = est.run(
[circuit] * 2, [SparsePauliOp("ZZZ"), SparsePauliOp("III")], seed=15
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [0.00390625, 1.0])
@data(True, False)
def test_1qubit(self, abelian_grouping):
"""Test for 1-qubit cases"""
qc0 = QuantumCircuit(1)
qc1 = QuantumCircuit(1)
qc1.x(0)
op0 = SparsePauliOp.from_list([("I", 1)])
op1 = SparsePauliOp.from_list([("Z", 1)])
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
with self.subTest("test circuit 0, observable 0"):
result = est.run(qc0, op0).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 0, observable 1"):
result = est.run(qc0, op1).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 1, observable 0"):
result = est.run(qc1, op0).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 1, observable 1"):
result = est.run(qc1, op1).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-1])
@data(True, False)
def test_2qubits(self, abelian_grouping):
"""Test for 2-qubit cases (to check endian)"""
qc0 = QuantumCircuit(2)
qc1 = QuantumCircuit(2)
qc1.x(0)
op0 = SparsePauliOp.from_list([("II", 1)])
op1 = SparsePauliOp.from_list([("ZI", 1)])
op2 = SparsePauliOp.from_list([("IZ", 1)])
with self.assertWarns(DeprecationWarning):
est = Estimator(abelian_grouping=abelian_grouping)
with self.subTest("test circuit 0, observable 0"):
result = est.run(qc0, op0).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 1, observable 0"):
result = est.run(qc1, op0).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 0, observable 1"):
result = est.run(qc0, op1).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 1, observable 1"):
result = est.run(qc1, op1).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 0, observable 2"):
result = est.run(qc0, op2).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [1])
with self.subTest("test circuit 1, observable 2"):
result = est.run(qc1, op2).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-1])
@data(True, False)
def test_empty_parameter(self, abelian_grouping):
"""Test for empty parameter"""
n = 2
qc = QuantumCircuit(n)
op = SparsePauliOp.from_list([("I" * n, 1)])
with self.assertWarns(DeprecationWarning):
estimator = Estimator(abelian_grouping=abelian_grouping)
with self.subTest("one circuit"):
result = estimator.run(qc, op, shots=1000).result()
np.testing.assert_allclose(result.values, [1])
self.assertEqual(len(result.metadata), 1)
with self.subTest("two circuits"):
result = estimator.run([qc] * 2, [op] * 2, shots=1000).result()
np.testing.assert_allclose(result.values, [1, 1])
self.assertEqual(len(result.metadata), 2)
@data(True, False)
def test_numpy_params(self, abelian_grouping):
"""Test for numpy array as parameter values"""
qc = RealAmplitudes(num_qubits=2, reps=2)
op = SparsePauliOp.from_list([("IZ", 1), ("XI", 2), ("ZY", -1)])
k = 5
params_array = np.random.rand(k, qc.num_parameters)
params_list = params_array.tolist()
params_list_array = list(params_array)
with self.assertWarns(DeprecationWarning):
estimator = Estimator(abelian_grouping=abelian_grouping)
target = estimator.run([qc] * k, [op] * k, params_list, seed=15).result()
with self.subTest("ndarrary"):
result = estimator.run([qc] * k, [op] * k, params_array, seed=15).result()
self.assertEqual(len(result.metadata), k)
np.testing.assert_allclose(result.values, target.values)
with self.subTest("list of ndarray"):
result = estimator.run([qc] * k, [op] * k, params_list_array, seed=15).result()
self.assertEqual(len(result.metadata), k)
np.testing.assert_allclose(result.values, target.values)
@data(True, False)
def test_with_shots_option_with_approximation(self, abelian_grouping):
"""test with shots option."""
# Note: abelian_gropuing is ignored when approximation is True as documented.
# The purpose of this test is to make sure the results remain the same.
est = Estimator(approximation=True, abelian_grouping=abelian_grouping)
result = est.run(
self.ansatz, self.observable, parameter_values=[[0, 1, 1, 2, 3, 5]], shots=1024, seed=15
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-1.3088991960117797])
self.assertIsInstance(result.metadata[0]["variance"], float)
def test_with_shots_option_without_approximation(self):
"""test with shots option."""
with self.assertWarns(DeprecationWarning):
est = Estimator(approximation=False, abelian_grouping=False)
result = est.run(
self.ansatz, self.observable, parameter_values=[[0, 1, 1, 2, 3, 5]], shots=1024, seed=15
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-1.2895828299114598])
self.assertIsInstance(result.metadata[0]["variance"], float)
def test_warn_shots_none_without_approximation(self):
"""Test waning for shots=None without approximation."""
with self.assertWarns(DeprecationWarning):
est = Estimator(approximation=False)
result = est.run(
self.ansatz,
self.observable,
parameter_values=[[0, 1, 1, 2, 3, 5]],
shots=None,
seed=15,
).result()
self.assertIsInstance(result, EstimatorResult)
np.testing.assert_allclose(result.values, [-1.313831587508902])
self.assertIsInstance(result.metadata[0]["variance"], float)
def test_result_order(self):
"""Test to validate the order."""
qc1 = QuantumCircuit(1)
qc1.measure_all()
param = Parameter("a")
qc2 = QuantumCircuit(1)
qc2.ry(np.pi / 2 * param, 0)
qc2.measure_all()
estimator = Estimator(approximation=True)
job = estimator.run([qc1, qc2, qc1, qc1, qc2], ["Z"] * 5, [[], [1], [], [], [1]])
result = job.result()
np.testing.assert_allclose(result.values, [1, 0, 1, 1, 0], atol=1e-10)
if __name__ == "__main__":
unittest.main()