mirror of https://github.com/Qiskit/qiskit-aer.git
932 lines
74 KiB
Plaintext
932 lines
74 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Building Noise Models"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"\n",
|
|
"This notebook introduces how to use the Qiskit Aer `noise` module to build custom noise models for noisy simulations."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.403378Z",
|
|
"start_time": "2019-08-19T17:00:41.139269Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from qiskit import QuantumCircuit, transpile\n",
|
|
"from qiskit.quantum_info import Kraus, SuperOp\n",
|
|
"from qiskit_aer import AerSimulator\n",
|
|
"from qiskit.visualization import plot_histogram\n",
|
|
"\n",
|
|
"# Import from Qiskit Aer noise module\n",
|
|
"from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError, \n",
|
|
" pauli_error, depolarizing_error, thermal_relaxation_error)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Qiskit Aer Noise Module\n",
|
|
"\n",
|
|
"The Qiskit Aer `noise` module contains Python classes to build customized noise models for simulation. There are three key classes:\n",
|
|
"\n",
|
|
"1. The `NoiseModel` class which stores a noise model used for noisy simulation.\n",
|
|
"2. The `QuantumError` class which describes CPTP gate errors. These can be applied:\n",
|
|
" * After *gate* or *reset* instructions\n",
|
|
" * Before *measure* instructions.\n",
|
|
"\n",
|
|
"3. The `ReadoutError` class which describes classical readout errors."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Quantum Errors\n",
|
|
"\n",
|
|
"Rather than deal with the `QuantumError` object directly, many helper functions exist to automatically generate a specific type of parameterized quantum error. These are contained in the `noise` module and include functions for many common errors types used in quantum computing research. The function names and the type of error they return are:\n",
|
|
"\n",
|
|
"| Standard error function | Details |\n",
|
|
"| --- | --- |\n",
|
|
"| `kraus_error` | a general n-qubit CPTP error channel given as a list of Kraus matrices $[K_0, ...]$. |\n",
|
|
"| `mixed_unitary_error` | an n-qubit mixed unitary error given as a list of unitary matrices and probabilities $[(U_0, p_0),...]$. |\n",
|
|
"| `coherent_unitary_error` | an n-qubit coherent unitary error given as a single unitary matrix $U$. |\n",
|
|
"| `pauli_error` | an n-qubit Pauli error channel (mixed unitary) given as a list of Pauli's and probabilities $[(P_0, p_0),...]$ |\n",
|
|
"| `depolarizing_error` | an n-qubit depolarizing error channel parameterized by a depolarization probability $p$. |\n",
|
|
"| `reset_error` | a single-qubit reset error parameterized by a probabilities $p_0, p_1$ of resetting to the $|0\\rangle$, $|1\\rangle$ state.|\n",
|
|
"| `thermal_relaxation_error` | a single qubit thermal relaxation channel parameterized by relaxation time constants $T_1$, $T_2$, gate time $t$, and excited state thermal population $p_1$. |\n",
|
|
"| `phase_amplitude_damping_error` | A single-qubit generalized combined phase and amplitude damping error channel given by an amplitude damping parameter $\\lambda$, a phase damping parameter $\\gamma$, and an excited state thermal population $p_1$. |\n",
|
|
"| `amplitude_damping_error` | A single-qubit generalized amplitude damping error channel given by an amplitude damping parameter $\\lambda$, and an excited state thermal population $p_1$. |\n",
|
|
"| `phase_damping_error` | A single-qubit phase damping error channel given by a phase damping parameter $\\gamma$ |\n",
|
|
"\n",
|
|
"### Combining quantum errors\n",
|
|
"\n",
|
|
"`QuantumError` instances can be combined by using composition, tensor product, and tensor expansion (reversed order tensor product) to produce new `QuantumErrors` as:\n",
|
|
"\n",
|
|
" * Composition: $\\cal{E}(\\rho)=\\cal{E_2}(\\cal{E_1}(\\rho))$ as `error = error1.compose(error2)`\n",
|
|
" * Tensor product: $\\cal{E}(\\rho) =(\\cal{E_1}\\otimes\\cal{E_2})(\\rho)$ as `error error1.tensor(error2)`\n",
|
|
" * Expand product: $\\cal{E}(\\rho) =(\\cal{E_2}\\otimes\\cal{E_1})(\\rho)$ as `error error1.expand(error2)`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Example\n",
|
|
"\n",
|
|
"For example to construct a 5% single-qubit Bit-flip error:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.420358Z",
|
|
"start_time": "2019-08-19T17:00:43.416062Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"QuantumError on 1 qubits. Noise circuits:\n",
|
|
" P(0) = 0.05, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q: ┤ X ├\n",
|
|
" └───┘\n",
|
|
" P(1) = 0.95, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q: ┤ I ├\n",
|
|
" └───┘\n",
|
|
"QuantumError on 1 qubits. Noise circuits:\n",
|
|
" P(0) = 0.05, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q: ┤ Z ├\n",
|
|
" └───┘\n",
|
|
" P(1) = 0.95, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q: ┤ I ├\n",
|
|
" └───┘\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Construct a 1-qubit bit-flip and phase-flip errors\n",
|
|
"p_error = 0.05\n",
|
|
"bit_flip = pauli_error([('X', p_error), ('I', 1 - p_error)])\n",
|
|
"phase_flip = pauli_error([('Z', p_error), ('I', 1 - p_error)])\n",
|
|
"print(bit_flip)\n",
|
|
"print(phase_flip)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.435843Z",
|
|
"start_time": "2019-08-19T17:00:43.432211Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"QuantumError on 1 qubits. Noise circuits:\n",
|
|
" P(0) = 0.0025000000000000005, Circuit = \n",
|
|
" ┌───┐┌───┐\n",
|
|
"q: ┤ X ├┤ Z ├\n",
|
|
" └───┘└───┘\n",
|
|
" P(1) = 0.0475, Circuit = \n",
|
|
" ┌───┐┌───┐\n",
|
|
"q: ┤ X ├┤ I ├\n",
|
|
" └───┘└───┘\n",
|
|
" P(2) = 0.0475, Circuit = \n",
|
|
" ┌───┐┌───┐\n",
|
|
"q: ┤ I ├┤ Z ├\n",
|
|
" └───┘└───┘\n",
|
|
" P(3) = 0.9025, Circuit = \n",
|
|
" ┌───┐┌───┐\n",
|
|
"q: ┤ I ├┤ I ├\n",
|
|
" └───┘└───┘\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Compose two bit-flip and phase-flip errors\n",
|
|
"bitphase_flip = bit_flip.compose(phase_flip)\n",
|
|
"print(bitphase_flip)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.460191Z",
|
|
"start_time": "2019-08-19T17:00:43.456782Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"QuantumError on 2 qubits. Noise circuits:\n",
|
|
" P(0) = 0.0025000000000000005, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q_0: ┤ X ├\n",
|
|
" ├───┤\n",
|
|
"q_1: ┤ Z ├\n",
|
|
" └───┘\n",
|
|
" P(1) = 0.0475, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q_0: ┤ I ├\n",
|
|
" ├───┤\n",
|
|
"q_1: ┤ Z ├\n",
|
|
" └───┘\n",
|
|
" P(2) = 0.0475, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q_0: ┤ X ├\n",
|
|
" ├───┤\n",
|
|
"q_1: ┤ I ├\n",
|
|
" └───┘\n",
|
|
" P(3) = 0.9025, Circuit = \n",
|
|
" ┌───┐\n",
|
|
"q_0: ┤ I ├\n",
|
|
" ├───┤\n",
|
|
"q_1: ┤ I ├\n",
|
|
" └───┘\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Tensor product two bit-flip and phase-flip errors with\n",
|
|
"# bit-flip on qubit-0, phase-flip on qubit-1\n",
|
|
"error2 = phase_flip.tensor(bit_flip)\n",
|
|
"print(error2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Converting to and from QuantumChannel operators\n",
|
|
" \n",
|
|
"We can also convert back and forth between `QuantumError` objects in Qiskit Aer and `QuantumChannel` objects in Qiskit Terra."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.482424Z",
|
|
"start_time": "2019-08-19T17:00:43.473779Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Kraus([[[ 9.74679434e-01+0.j, 0.00000000e+00+0.j],\n",
|
|
" [-1.20234617e-16+0.j, 9.74679434e-01+0.j]],\n",
|
|
"\n",
|
|
" [[ 2.62045272e-16+0.j, 2.23606798e-01+0.j],\n",
|
|
" [ 2.23606798e-01+0.j, -2.84112242e-16+0.j]]],\n",
|
|
" input_dims=(2,), output_dims=(2,))\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Convert to Kraus operator\n",
|
|
"bit_flip_kraus = Kraus(bit_flip)\n",
|
|
"print(bit_flip_kraus)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.509521Z",
|
|
"start_time": "2019-08-19T17:00:43.503976Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"SuperOp([[1. +0.j, 0. +0.j, 0. +0.j, 0. +0.j],\n",
|
|
" [0. +0.j, 0.9+0.j, 0. +0.j, 0. +0.j],\n",
|
|
" [0. +0.j, 0. +0.j, 0.9+0.j, 0. +0.j],\n",
|
|
" [0. +0.j, 0. +0.j, 0. +0.j, 1. +0.j]],\n",
|
|
" input_dims=(2,), output_dims=(2,))\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Convert to Superoperator\n",
|
|
"phase_flip_sop = SuperOp(phase_flip)\n",
|
|
"print(phase_flip_sop)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:43.794037Z",
|
|
"start_time": "2019-08-19T17:00:43.778223Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"QuantumError on 1 qubits. Noise circuits:\n",
|
|
" P(0) = 1.0, Circuit = \n",
|
|
" ┌───────┐\n",
|
|
"q: ┤ kraus ├\n",
|
|
" └───────┘\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Convert back to a quantum error\n",
|
|
"print(QuantumError(bit_flip_kraus))\n",
|
|
"\n",
|
|
"# Check conversion is equivalent to original error\n",
|
|
"QuantumError(bit_flip_kraus) == bit_flip"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Readout Error\n",
|
|
"\n",
|
|
"Classical readout errors are specified by a list of assignment probabilities vectors $P(A|B)$:\n",
|
|
"\n",
|
|
" * $A$ is the *recorded* classical bit value\n",
|
|
" * $B$ is the *true* bit value returned from the measurement \n",
|
|
" \n",
|
|
"E.g. for 1 qubits: $ P(A|B) = [P(A|0), P(A|1)]$."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:44.659598Z",
|
|
"start_time": "2019-08-19T17:00:44.654818Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"ReadoutError([[0.95 0.05]\n",
|
|
" [0.1 0.9 ]])"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Measurement miss-assignement probabilities\n",
|
|
"p0given1 = 0.1\n",
|
|
"p1given0 = 0.05\n",
|
|
"\n",
|
|
"ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Readout errors may also be combined using `compose`, `tensor` and `expand` like with quantum errors."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Adding errors to a Noise Model\n",
|
|
"\n",
|
|
"When adding a quantum error to a noise model we must specify the type of *instruction* that it acts on, and what qubits to apply it to. There are two cases for Quantum Errors:\n",
|
|
" \n",
|
|
" 1. All-qubit quantum error\n",
|
|
" 2. Specific qubit quantum error\n",
|
|
" \n",
|
|
"### 1. All-qubit quantum error\n",
|
|
"\n",
|
|
"This applies the same error to any occurrence of an instruction, regardless of which qubits it acts on.\n",
|
|
"\n",
|
|
"It is added as `noise_model.add_all_qubit_quantum_error(error, instructions)`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:45.882254Z",
|
|
"start_time": "2019-08-19T17:00:45.877630Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"NoiseModel:\n",
|
|
" Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n",
|
|
" Instructions with noise: ['u3', 'u2', 'u1']\n",
|
|
" All-qubits errors: ['u1', 'u2', 'u3']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create an empty noise model\n",
|
|
"noise_model = NoiseModel()\n",
|
|
"\n",
|
|
"# Add depolarizing error to all single qubit u1, u2, u3 gates\n",
|
|
"error = depolarizing_error(0.05, 1)\n",
|
|
"noise_model.add_all_qubit_quantum_error(error, ['u1', 'u2', 'u3'])\n",
|
|
"\n",
|
|
"# Print noise model info\n",
|
|
"print(noise_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 2. Specific qubit quantum error\n",
|
|
"\n",
|
|
"This applies the error to any occurrence of an instruction acting on a specified list of qubits. Note that the order of the qubit matters: For a 2-qubit gate an error applied to qubits [0, 1] is different to one applied to qubits [1, 0] for example.\n",
|
|
"\n",
|
|
"It is added as `noise_model.add_quantum_error(error, instructions, qubits)`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:46.615959Z",
|
|
"start_time": "2019-08-19T17:00:46.612055Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"NoiseModel:\n",
|
|
" Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n",
|
|
" Instructions with noise: ['u3', 'u2', 'u1']\n",
|
|
" Qubits with noise: [0]\n",
|
|
" Specific qubit errors: [('u1', (0,)), ('u2', (0,)), ('u3', (0,))]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create an empty noise model\n",
|
|
"noise_model = NoiseModel()\n",
|
|
"\n",
|
|
"# Add depolarizing error to all single qubit u1, u2, u3 gates on qubit 0 only\n",
|
|
"error = depolarizing_error(0.05, 1)\n",
|
|
"noise_model.add_quantum_error(error, ['u1', 'u2', 'u3'], [0])\n",
|
|
"\n",
|
|
"# Print noise model info\n",
|
|
"print(noise_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Note on non-local qubit quantum error\n",
|
|
"\n",
|
|
"`NoiseModel` does not support addition of non-local qubit quantum errors. They should be handled outside of `NoiseModel`. That suggests you should write your own transpiler pass (`TransformationPass`) and run the pass just before running the simulator if you need to insert your quantum errors into your circuit under your own conditions. See `noise.passes.LocalNoisePass` for example of how to implement such a transpiler pass."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Executing a noisy simulation with a noise model\n",
|
|
"\n",
|
|
"The command `AerSimulator(noise_model=noise_model)` returns a simulator configured to the given noise model. In addition to setting the simulator's noise model, it also overrides the simulator's basis gates, according to the gates of the noise model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "subslide"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Noise Model Examples\n",
|
|
"\n",
|
|
"We will now give some examples of noise models. For our demonstrations we will use a simple test circuit generating a n-qubit GHZ state:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:48.817405Z",
|
|
"start_time": "2019-08-19T17:00:48.806966Z"
|
|
},
|
|
"slideshow": {
|
|
"slide_type": "fragment"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" ┌───┐ ░ ┌─┐ \n",
|
|
" q_0: ┤ H ├──■─────────────░─┤M├─────────\n",
|
|
" └───┘┌─┴─┐ ░ └╥┘┌─┐ \n",
|
|
" q_1: ─────┤ X ├──■────────░──╫─┤M├──────\n",
|
|
" └───┘┌─┴─┐ ░ ║ └╥┘┌─┐ \n",
|
|
" q_2: ──────────┤ X ├──■───░──╫──╫─┤M├───\n",
|
|
" └───┘┌─┴─┐ ░ ║ ║ └╥┘┌─┐\n",
|
|
" q_3: ───────────────┤ X ├─░──╫──╫──╫─┤M├\n",
|
|
" └───┘ ░ ║ ║ ║ └╥┘\n",
|
|
"meas: 4/════════════════════════╩══╩══╩══╩═\n",
|
|
" 0 1 2 3 \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# System Specification\n",
|
|
"n_qubits = 4\n",
|
|
"circ = QuantumCircuit(n_qubits)\n",
|
|
"\n",
|
|
"# Test Circuit\n",
|
|
"circ.h(0)\n",
|
|
"for qubit in range(n_qubits - 1):\n",
|
|
" circ.cx(qubit, qubit + 1)\n",
|
|
"circ.measure_all()\n",
|
|
"print(circ)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Ideal Simulation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:50.560988Z",
|
|
"start_time": "2019-08-19T17:00:50.415545Z"
|
|
},
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAFLCAYAAABShRycAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdIElEQVR4nO3de5xdZX3v8c/PDA7BJJoEk5ALDkguhkA0jI1Dx6BiKGqrzbFHLV7QVrBW8ND22L7aamu1FERrqfS0CoWC1rZalcvBFhEl5IymwUlKIAGT0CQ0wVzMBZPQOJj4O3+sPek4PLlMMjN7Lp/367Vf7FnPWnv/5kVWvlnPep5nRWYiSZJ+1nPqXYAkSQORASlJUoEBKUlSgQEpSVKBASlJUoEBKUlSQUO9C+hPp556ajY1NdW7DEnSALF8+fIdmfnCUtuwCsimpiba29vrXYYkaYCIiCcO12YXqyRJBQakJA0iTU1NnHPOObz0pS+lubkZgA996EPMmjWLc889l0WLFvHUU08BsHPnTl796lczatQorrjiijpWPTgZkJI0yNx///089NBDh24ZLVy4kFWrVvHwww8zY8YMrrnmGgBOPvlkPv7xj/OpT32qnuUOWgakJA1yF110EQ0N1ZCSV7ziFWzevBmA5z3vebS2tnLyySfXs7xBy4CUpEEkIrjooos477zzuPHGG5/Vfsstt/C6172uDpUNPcNqFKskDXZtbW1MmTKF7du3s3DhQmbNmsWCBQsAuPrqq2loaODtb397nascGryClKRBZMqUKQBMmDCBRYsW8eCDDwJw6623cvfdd/PFL36RiKhniUOGASlJg8TTTz/N3r17D72/9957mTNnDvfccw/XXXcdd911F6ecckqdqxw67GKVpEFi27ZtLFq0CIADBw5wySWXcPHFF3PWWWfR0dHBwoULgWqgzmc/+1mgmhayZ88ennnmGe644w7uvfdeZs+eXbffYTCJzKx3Df2mubk5XUlHktQpIpZnZnOpzS7WYa406XjXrl0sXLiQ6dOns3DhQnbv3g3AnXfeybnnnnto37a2tnqWLkl9yoDUsyYdX3vttVx44YWsW7eOCy+8kGuvvRaACy+8kJUrV/LQQw9xyy238N73vreeZUtSnzIg9Sx33nknl156KQCXXnopd9xxBwCjRo06NDru6aefdqScpCHNgBzmSpOOt23bxmmnnQbApEmT2LZt26H9b7/9dmbNmsUb3vAGbrnllrrULEn9wVGsw1xp0nFXEfEzV4qLFi1i0aJFLFmyhI985CPcd999/V2yJPULryCHudKk44kTJ7JlyxYAtmzZwoQJE5513IIFC1i/fj07duzo13olqb8YkMPY4SYdv/GNb+S2224D4LbbbuNNb3oTAI8//jid04JWrFhBR0cH48ePr0/xktTH7GIdxg436fjlL385b3nLW7j55pt50YtexJe//GUAvvrVr/L5z3+ek046iZEjR/KlL33JgTqShiwXCpAkDVsuFCBJUg8ZkJIkFRiQkiQVGJCSJBU4ilXSkHbZ9fWuQH3lpqv69vO9gpQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcB5kD3knKqhq6/nVEkaXLyClCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKmgbgEZEb8fERkRf9Vl2621bV1f/9btuMaIuCEidkTE0xFxV0RM7f/fQJI0lNUlICPiFcDlwMOF5vuA07q8Xt+t/XrgzcCvAq8ExgB3R8SIvqpXkjT89HtARsTzgS8CvwbsLuzSkZlbu7x2dTv214EPZeY3M3MF8E7gXOC1/VC+JGmYqMcV5I3AVzLz/sO0t0bE9ohYGxE3RcSELm3nAScB93ZuyMxNwGPA+X1WsSRp2Gnozy+LiMuAs4B3HGaXe4CvARuAJuBPgW9HxHmZ2QFMAg4CO7odt63WVvrOy6m6c5k8eTKLFy8G4Mwzz2T06NGsXLkSgPHjx3P22WezZMkSABoaGmhtbWXFihXs2bMHgObmZmBUj39vDQ7t7e3s27cPgPnz57N582aefPJJAGbOnMmIESN49NFHAZg0aRJnnHEGS5cuBWDkyJHMnz+fZcuWsX//fgBaWlrYsGEDW7duBWD27NkcPHiQNWvWADBlyhSmTp3KsmXLABg1ahTNzc0sXbqUjo4OAFpbW1m7di3bt28HYM6cOXR0dLBu3ToApk2bxsSJE2lvbwdgzJgxzJs3j7a2Ng4cOADAggULWL16NTt37gRg7ty57N27l/Xr1wPQ1NTEuHHjWLFiBQBjx45l7ty5PPDAA2QmEcEFF1zAypUr2b276vSZN28eu3btYuPGjcDxn0/btm1j06ZNAEyfPp3GxkZWrVoFwIQJE5gxYwZtbW0ANDY20tLS0uP/TzCrh38SNFhs2bLlhM+nI4nM7MPyu3xRxEygDWjNzDW1bYuBVZl5xWGOmQw8Abw1M78WEZcAnwdOyi6FR8S3gXWZ+b4j1dDc3Jydf5Ecr8uuP6HDNYDddFW9K1Bf8JwdunrjnI2I5ZnZXGrrzy7WFuBUYHVEHIiIA8AFwG/Wfm7sfkBm/gDYDEyvbdoKjKh9TlcTa22SJPWK/gzIO4BzgJd2ebUD/1R7/0z3AyLiVGAKsKW2aTnwE2Bhl32mAi8Bvts3ZUuShqN+uweZmU8BT3XdFhFPA7syc1VEjIqIjwJfpQrEJuAaYDtwe+0zfhQRNwPXRcR2YCfwaarpIvf1yy8iSRoW+nWQzlEcpLrCfBfwAqqQvB94S2bu7bLfVcAB4EvASOBbwLsy82B/FitJGtrqGpCZ+aou7/cDv3AMx3QAV9ZekiT1CddilSSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSpwICUJKnAgJQkqcCAlCSp4JgDMiIWRERDYXtDRCzo3bIkSaqvnlxB3g+MK2x/fq1NkqQhoycBGUAWto8Hnu6dciRJGhie1WXaXUTcVXubwN9HREeX5hHAHOC7fVCbJEl1c9SABHbW/hvAbmB/l7ZngDbgpl6uS5KkujpqQGbmewAiYiPwqcy0O1WSNOQdyxUkAJn5J31ZiCRJA8kxB2REjAOuBi4EJtBtgE9mjund0iRJqp9jDkjgZuBlwI3ADyiPaD2siPgA8D6gqbZpNfCnmfn1WnsAfwxcDowFlgEfyMzVXT5jLPAZ4I21TXcBV2bmUz2pRZKko+lJQF4ILMzMZcf5XZuB3wPWUV19XgrcERHnZebDwO8CvwO8G1gD/BHwzYiYmZl7a5/xD8DpwMW1n/8W+ALwS8dZkyRJRT0JyO3AvuP9osy8s9umP4yI9wMtEfEIcBVwbWZ+FSAiLq195yXA5yLiJVTB2JqZS2v7vA/4f7UQXXO8tUmS1F1PFgr4Q+BjETHqRL80IkZExNuAUVRzKM8AJgH3du6TmfuBJcD5tU0tVAHddc7ld6gWKTgfSZJ6UU+uID9Mdf9we0Q8Afyka2Nmnnu0D4iIc4ClwMlUYbcoMx+JiM6A29btkG3AlNr7ScAPM/PQvc/MzIjYXms73HdeTnVfk8mTJ7N48WIAzjzzTEaPHs3KlSsBGD9+PGeffTZLliwBoKGhgdbWVlasWMGePXsAaG5upsp0DUXt7e3s21d1ksyfP5/Nmzfz5JNPAjBz5kxGjBjBo48+CsCkSZM444wzWLp0KQAjR45k/vz5LFu2jP37q6nCLS0tbNiwga1btwIwe/ZsDh48yJo1VWfHlClTmDp1KsuWVXctRo0aRXNzM0uXLqWjo1qPo7W1lbVr17J9+3YA5syZQ0dHB+vWrQNg2rRpTJw4kfb2dgDGjBnDvHnzaGtr48CBAwAsWLCA1atXs3NnNaV57ty57N27l/Xr1wPQ1NTEuHHjWLFiBQBjx45l7ty5PPDAA2QmEcEFF1zAypUr2b17NwDz5s1j165dbNy4ETj+82nbtm1s2rQJgOnTp9PY2MiqVasAmDBhAjNmzKCtrQ2AxsZGWlpaevz/CWb18E+CBostW7ac8Pl0JNElb468Y8QfH6n9WKaBRMRzqe4hPh/4FeAy4FXAGKqrwRdl5n922f8WYEpm/kJE/AHw3sw8s9tnrgduysxrjvb9zc3N2fkXyfG67PoTOlwD2E1X1bsC9QXP2aGrN87ZiFiemc2ltn6dB5mZzwCP135cHhEvB36LavoIwETgP7scMhHYWnu/FXhhRETnVWRt5OuELvtIktQr6v08yOcAjcAGqpBb2NkQEScDr+S/7zkuperfbOlyfAvwPFwLVpLUy3qyUMBejjD38WgLBUTEtcDXgU3AaKrRqa8C3lC7l3g98AcR8X1gLdU9z31UUzvIzMci4h6qEa2X1z72c8DdjmCVJPW2ngzSuaLbzydRLRzwZv67i/RIJgF/X/vvj4CHgddl5jdq7dcBI4H/w38vFHBRlzmQUIXqDUDnMXcV6pIk6YT15B7kbaXtEbGCahGBG45y/LuP0p7AR2uvw+2zG3jHkSuVJOnE9cY9yPtxJRtJ0hDTGwH5NmBHL3yOJEkDRk8G6TzCzw7SCappGOOA9/dyXZIk1VVPBul8pdvPPwV+CCzOzO/3XkmSJNWfD0yWJKmgJ1eQAETEa4DZVN2tqzNzcW8XJUlSvfXkHuQU4HbgPKoHJgNMjoh2qkXHf3DYgyVJGmR6Mor1M8BB4KzMnJaZ04DptW2f6YviJEmql550sS4EXpWZGzo3ZOb6iPgg8K1er0ySpDrq6TzI0lqsx/a8LEmSBpGeBOS3gBsiYlrnhog4HbgeryAlSUNMTwLyg1SPllofEU9ExBPAf9S2fbAvipMkqV56Mg9yU0TMA14LzKptfiwz7+uTyiRJqqOjXkFGxOsiYmNEjMnKNzPzhsy8AfherW3h0T5HkqTB5Fi6WK8APpmZe7o3ZOaPgE8AV/VyXZIk1dWxBOS5wJG6Ub8NzO2dciRJGhiOJSBfSLUw+eEkML53ypEkaWA4loDcTHUVeTjnAk/2TjmSJA0MxxKQXwc+HhEjuzdExCnAx2r7SJI0ZBzLNI+rgV8B1kbEXwGdz358CdUAngD+rG/KkySpPo4akJm5PSLOB/6GKgijswn4BvCBzNzWdyVKktT/jmmhgMx8Anh9RIwFzqIKyXWZubsvi5MkqV569MDkWiB+r49qkSRpwOjp0zwkSRoWDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIKDEhJkgoMSEmSCgxISZIK+jUgI2JBRNwVEU9GREbEu7u131rb3vX1b932aYyIGyJiR0Q8Xfu8qf35e0iShr7+voIcBawC/hew/zD73Aec1uX1+m7t1wNvBn4VeCUwBrg7Ikb0Qb2SpGGqoT+/LDP/BfgXqK4WD7NbR2ZuLTVExPOBXwfek5nfrG17J/AE8FrgG71dsyRpeBqI9yBbI2J7RKyNiJsiYkKXtvOAk4B7Ozdk5ibgMeD8fq5TkjSE9esV5DG4B/gasAFoAv4U+HZEnJeZHcAk4CCwo9tx22ptkiT1igEVkJn5T11+fCQillN1n76BKjh7LCIuBy4HmDx5MosXLwbgzDPPZPTo0axcuRKA8ePHc/bZZ7NkyRIAGhoaaG1tZcWKFezZsweA5uZmqtuoGora29vZt28fAPPnz2fz5s08+eSTAMycOZMRI0bw6KOPAjBp0iTOOOMMli5dCsDIkSOZP38+y5YtY//+6vZ6S0sLGzZsYOvW6o7B7NmzOXjwIGvWrAFgypQpTJ06lWXLlgEwatQompubWbp0KR0dHQC0traydu1atm/fDsCcOXPo6Ohg3bp1AEybNo2JEyfS3t4OwJgxY5g3bx5tbW0cOHAAgAULFrB69Wp27twJwNy5c9m7dy/r168HoKmpiXHjxrFixQoAxo4dy9y5c3nggQfITCKCCy64gJUrV7J7924A5s2bx65du9i4cSNw/OfTtm3b2LRpEwDTp0+nsbGRVatWATBhwgRmzJhBW1sbAI2NjbS0tPT4/xPM6uGfBA0WW7ZsOeHz6UgiM/uw/CN8ccQ+4IrMvPUo+20APpuZn4iI1wDfAiZk5g+77LMa+Epm/vGRPqu5uTk7/yI5Xpddf0KHawC76ap6V6C+4Dk7dPXGORsRyzOzudQ2EO9BHhIRpwJTgC21TcuBnwALu+wzFXgJ8N1+L1CSNGT1axdrRIwCzqr9+Bzg9Ih4KbCr9voo8FWqQGwCrgG2A7cDZOaPIuJm4LqI2A7sBD4NPEw1PUSSpF7R31eQzcC/114jgT+pvf8Y1eCbc4A7gbXAbcAaoCUz93b5jKuoAvNLwHeAfcAvZebB/vkVJEnDQX/Pg1wMxBF2+YVj+IwO4MraS5KkPjGg70FKklQvBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBQakJEkFBqQkSQUGpCRJBYM2ICPiNyNiQ0T8OCKWR8Qr612TJGnoGJQBGRFvBf4S+DPgZcB3gX+NiNPrWpgkacgYlAEJ/DZwa2belJmPZeaVwBbg/XWuS5I0RAy6gIyI5wLnAfd2a7oXOL//K5IkDUWDLiCBU4ERwLZu27cBk/q/HEnSUNRQ7wL6WkRcDlxe+3FfRKypZz2D0KnAjnoX0R/+9rfqXYF0wobN+Qq9ds6+6HANgzEgdwAHgYndtk8EtnbfOTNvBG7sh7qGpIhoz8zmetch6eg8X3vXoOtizcxngOXAwm5NC6lGs0qSdMIG4xUkwKeBL0TEg8B3gN8AJgOfrWtVkqQhY1AGZGZ+KSLGAx8GTgNWAa/PzCfqW9mQZPe0NHh4vvaiyMx61yBJ0oAz6O5BSpLUHwxISZIKDEhJkgoMSB1WRESX9/5ZkTSs+JeeDiszs7b2LZn5087tXYNTkoYqR7GqKCImAb8CzANmAv8GfCUzl9a1MElHFBENmXmg3nUMBQakiiLi68BZwGPAD6ielDIHeBy4FvhCZh6sX4WSjiQiRgB4nh6/QblQgPpWRLwG+DngZZm5OSJOBhqBs4H3AH8EjKNa0UjSABARPw/8NXAD8PnaspydbQ3AT4EExgK706ujo/IepEoWAI9k5maAzPxxZv4oM78L/A5wM/CxiJhXzyIl/YzLqXp5Pg78V0TcExG/CJCZB2rjCM4H/oHqkYE6CgNSJfcB50TExd0bMnMP8AmqheEv6O/CJB1WE9XymxcB76tt++eI2BMRN0fEXOBtwGTvUR4bu1hVshz4V+CvIuJvgW8C38/Mp2vto4DZuDi8NCBExGRgHbArMx+JiEeBr1GNI7gQeDPwIHAS8Ka6FTrIOEhHRRExDfh94LXAbuB7VM/bPAi0ADMzc2b9KpTUVe0BDqdk5qZu2xuo7jteCXwwM19Qh/IGJQNSRxQR5wLvoLp30XmifRf4dGY+Us/aJB27iLgDOJiZb653LYOFXaw6JCIagXOB/wHsBR4G2jPzd2vtM4GNwDOOgJMGj4gYRdUT9Jf1rmUw8QpSh0TEZ6jCcQvVNI4mqm7VO4FP+LxNafCKiMbM7Kh3HYOJo1gFQETMBt4N/BpwcWa+GJhENafqdcD3I+J9LjMnDRwRMTEi3hkR446y38mZ2eH52zMGpDr9MvBQZt6bmTtry1X9MDOvzcwzgL8Afgs4ra5VSurqw8BtwOMR8c8R8frarZJDIuJ04IraFaRdhj1gQKrTY8BpEXEWVBOLI6KhtooOwE3Af1GtzyppYGimmpf8O1QD6G4HNkTEDV0W8rgM+A27V3vOgFSnJcAB4O6IeEvtX5sHMvPHAJm5gWr1DU8yaQCozX3cDGzIzL8DLgbmUg3EeSXwvYh4BPhtqlsl6iEH6eiQ2gn3F8A5VCfeg8C3a+8/AFwCNHVZMEBSnUTE84DXANszc1m3tlOolp3731QD70Zn5v7+r3JwMyD1M2qTjX8RWAicSfWoq7HAA8DnMvOf6liepMOIiOh+jzEibgVenJmvrE9Vg5vzIEVETKVakgrgaeArwBeoAnIU1b3HHZm5qz4VSuouIp5D9VzzpPamW/tIYDI+dee4eQU5zEXE+6mmdsylCsL1VF2q91M9IHnTEQ6XNEBFxElAsw85P34G5DBW6059HPhz4G+AF1KtvfoqqsXIf0C1duOjpe4bSf2vFnxnAE84MrVvGZDDWERcCbwjM+cX2lqBa4ApwM9l5o7+rk/Ss0XEVcDVwJepntjxPeCHmXmwyz5jqEayfrPrg5PVM07zGN6eAUZHxByolqKKiOcCZGYb8Hbgx1TPl5M0MLyVaoT5WcAdwFLgkxHRGhHPr+1zCfARw/HEGJDD21eAnwJXRcTozOzIzGdqN//JzP8EngKm1rFGSTUR8ULgJ8BNtZGpLwJuphp5vgT4dkT8HnAVsOxwn6NjYxfrMNVlTcY3UU0sHkfVZfPXwL9TheICqnuT52TmxjqUKamLiDgNeBvwaGZ+o1vby4D31trHAtMy88n+r3LoMCCHuYh4AXA61fMeFwE/X2vaCgTwhcz8aF2Kk/QstekbmZk/7rr4eOcguoi4Gnh9Zr6sXjUOFc6DHIYiYgLwTqr1G3cA+6m6UtuATwEnUd3fuCcz19apTEkFmbm/MxgLcx9PAd4M/F09ahtqvIIchmqra5wN/F9gF1X36jnADGA78OHuS1dJqq/ayNS9R5puVXu4wFuBf3SAzokzIIeZ2r8891J1wSzpsu10YD7VPYwzgbdk5oq6FSrpZ0TE56hGrz5INQdyT2GfF2TmU/1d21DlKNbhZzawgWqKB1Bbqyrzicz8MvBLVN2t/7M+5UnqLiJ+leqxVX8O3Ek1rWNRRLy4dk+y897kbZ3TtnTivIIcZmon0d3AKcC7gP/IzJ922+dK4Ncz86X9X6Gk7iLiJuAgcB3V0zkuBV4MrAH+BfgW1YMF/jIzn1uvOocaryCHmdojb/4QGAl8HnhXREyLiFFw6Cb/BcCq+lUpqVNENFD1+jyVmesz81OZeQ7wcqqn7FxKNUXrBqqHDKiXeAU5TNW6YT4CvJHqCR5LgR9SrcW6BXhvZj5SvwoldYqIscDEzPx+bbWrn3QdrBMRbwX+EZiXmQ/Vqcwhx4Ac5mpTPt4A/DLVsnKrgH/OzO/Xsy5JR1Zb8Soy82BEXEbVvXpKvesaSgxIHRIRz+l+P1LSwBcRvw2MyMxP1ruWocSAlKRBrvYIrIP+A7d3GZCSJBU4ilWSpAIDUpKkAgNSkqQCA1KSpAIDUpKkAgNSkqSC/w8y2syX7VjnUAAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 504x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Ideal simulator and execution\n",
|
|
"sim_ideal = AerSimulator()\n",
|
|
"result_ideal = sim_ideal.run(circ).result()\n",
|
|
"plot_histogram(result_ideal.get_counts(0))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "subslide"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Noise Example 1: Basic bit-flip error noise model\n",
|
|
"\n",
|
|
"Lets consider a simple toy noise model example common in quantum information theory research:\n",
|
|
"\n",
|
|
"* When applying a single qubit gate, flip the state of the qubit with probability `p_gate1`.\n",
|
|
"* When applying a 2-qubit gate apply single-qubit errors to each qubit.\n",
|
|
"* When resetting a qubit reset to 1 instead of 0 with probability `p_reset`.\n",
|
|
"* When measuring a qubit, flip the state of the qubit with probability `p_meas`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:51.543615Z",
|
|
"start_time": "2019-08-19T17:00:51.536564Z"
|
|
},
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"NoiseModel:\n",
|
|
" Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n",
|
|
" Instructions with noise: ['reset', 'measure', 'u3', 'u1', 'cx', 'u2']\n",
|
|
" All-qubits errors: ['reset', 'measure', 'u1', 'u2', 'u3', 'cx']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Example error probabilities\n",
|
|
"p_reset = 0.03\n",
|
|
"p_meas = 0.1\n",
|
|
"p_gate1 = 0.05\n",
|
|
"\n",
|
|
"# QuantumError objects\n",
|
|
"error_reset = pauli_error([('X', p_reset), ('I', 1 - p_reset)])\n",
|
|
"error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)])\n",
|
|
"error_gate1 = pauli_error([('X',p_gate1), ('I', 1 - p_gate1)])\n",
|
|
"error_gate2 = error_gate1.tensor(error_gate1)\n",
|
|
"\n",
|
|
"# Add errors to noise model\n",
|
|
"noise_bit_flip = NoiseModel()\n",
|
|
"noise_bit_flip.add_all_qubit_quantum_error(error_reset, \"reset\")\n",
|
|
"noise_bit_flip.add_all_qubit_quantum_error(error_meas, \"measure\")\n",
|
|
"noise_bit_flip.add_all_qubit_quantum_error(error_gate1, [\"u1\", \"u2\", \"u3\"])\n",
|
|
"noise_bit_flip.add_all_qubit_quantum_error(error_gate2, [\"cx\"])\n",
|
|
"\n",
|
|
"print(noise_bit_flip)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Executing the noisy simulation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:52.951874Z",
|
|
"start_time": "2019-08-19T17:00:52.687440Z"
|
|
},
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAFLCAYAAABShRycAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7N0lEQVR4nO3deXxU5dn/8c9FggENKIuEvZHKHkkMqRGLAbdqXVpB69oWhcetrRatVZ/SRf09lboiorWKtVpt1dq6tEjdyq4IBARF2RSwgOxQtmIk4f79cZ/EYThgZstMku/79ZoX5JyZ61wzZ+Zc59znPvcx5xwiIiKyrybpTkBERCQTqUCKiIiEUIEUEREJoQIpIiISQgVSREQkhAqkiIhIiOx0J1CX2rZt6/Lz89OdhoiIZIi5c+ducs4dGTavURXI/Px8ysvL052GiIhkCDP75EDz1MQqIiISQgWyFlatWsVJJ51Enz596Nu3L2PHjgXg1ltvpVOnThQVFVFUVMTEiRMB2LNnD8OGDeOYY46hd+/ejB49Op3pi4hIHBpVE2u8srOzuffeeykuLmbHjh3079+f0047DYDrr7+eG2+8cZ/nP//881RUVPD+++/z3//+lz59+nDxxRej858iIvWHCmQtdOjQgQ4dOgDQokULevfuzZo1aw74fDNj165dVFZWsnv3bg455BBatmxZV+mKiEgSqIk1RitXruTdd9+ltLQUgAcffJB+/foxfPhwtm7dCsD555/PYYcdRocOHejatSs33ngjrVu3TmfaIiISIxXIGOzcuZPzzjuP+++/n5YtW3LNNdfw8ccfM3/+fDp06MBPfvITAGbPnk1WVhaffvopK1as4N5772X58uVpzl5ERGKhAllLe/bs4bzzzuPSSy9l6NChAOTl5ZGVlUWTJk244oormD17NgB//vOfOeOMM2jatCnt2rXj61//ui4vERGpZ1Qga8E5x4gRI+jduzc33HBDzfS1a9fW/P/FF1+koKAAgK5duzJp0iQAdu3axTvvvEOvXr3qNmkREUmIOunUwltvvcVTTz3FMcccQ1FREQB33HEHzzzzDPPnz8fMyM/P55FHHgHghz/8IZdffjl9+/bFOcfll19Ov3790vgOREQkVuacS3cOdaakpMSpqVNERKqZ2VznXEnYPDWxioiIhFCBFBERCaECKSIiEkIFUkREJIQKpIiISAgVSBERkRAqkCIikjYHup1gtXvvvRczY9OmTQC8/PLL9OvXj6KiIkpKSpgxY0bKctNAASIikjYHup1gnz59WLVqFa+//jpdu3atef4pp5zCt771LcyM9957jwsuuIDFixenJDcdQYqISNp06NCB4uJiYP/bCV5//fXcddddmFnN83Nzc2v+3rVr1z7zkk0FUkREMkLk7QRffvllOnXqRGFh4X7Pe/HFF+nVqxdnnXUWjz/+eMryUYEUEZG0i7ydYHZ2NnfccQe333576HOHDBnC4sWLeemll/jFL36RspxUIEVEJK2ibyf48ccfs2LFCgoLC8nPz2f16tUUFxezbt26fV5XVlbG8uXLazrwJJs66YiISNqE3U7wmGOOYcOGDTXPyc/Pp7y8nLZt2/LRRx/x1a9+FTNj3rx5VFRU0KZNm5TkpgIZoyvuj+3540emIgsRkYbhQLcTPPPMM0Of/7e//Y0//vGPNG3alObNm/Pcc8+lrKOObncVIxVIEZGGQ7e7EhERiZEKpIiISAgVSBERkRAqkCIiIiFUIEVEREKoQIqIiIRQgRQREQmhAikiIhJCBVJERCSECqSIiEgIFUgREZEQdVYgzex/zWyOmW03s41m9g8zKzjI8x8xM2dmN0ZNzzGzcWa2ycx2mdnfzaxz6t+BiIg0JnV5N4/BwG+BOYABtwNvmlkf59yWyCea2fnAccCnIXHuB74NXAxsBu4DJphZf+dcVcqyFxGRlMq0m0HUWYF0zp0e+beZfQ/YBnwd+EfE9K8AY4FTgX9GveZwYARwuXPujYg4nwTPfy2Fb0FERBqRdJ6DbBEsf2v1BDPLBp4B/s85tyjkNf2BpsDr1ROcc6uARcAJKc1WREQalXTeMHksMB+YGTHtNmCTc+7hA7ymPVAFbIqavj6Ytx8zuxK4EqBjx45MmTIFgG7dutGiRQsWLFgAQJs2bejbty/Tpk0DIDs7m4EDBzJv3jy2b98OQElJCZAb05sEKC8vZ+fOnQCUlpayevVq1qxZA0DPnj3Jysriww8/9G+wfXuOOuooZs70H0vz5s0pLS1l1qxZ7N69G4ABAwawYsUK1q1bB0CfPn2oqqpiyZIlAHTq1InOnTsza9YsAHJzcykpKWHmzJlUVFQAMHDgQJYuXVpz1+6CggIqKipYtmwZAF26dCEvL4/q+2e2bNmS4uJiZsyYQWVlJQBlZWV88MEHbN68GYDCwkJ27NjB8uXLAX8X8NatWzNv3jwAWrVqRWFhIVOnTsU5h5kxaNAgFixYwNatfj+puLiYLVu2sHLlyoTW0/r161m1ahUA3bt3Jycnh4ULFwLQrl07evTowYwZMwDIyclhwIABWk9aT1pPaV5PkEMs1q5dm/B6Opi03DDZzO4DLgIGOueWB9MGA38CipxzG4NpK4EHnXP3BH9fAvwRaOoiEjezScAy59xVB1uubpgsIpK50rF9zagbJpvZGHwHm5Ori2NgMNABWGtmlWZWCXwFuNPMVgfPWQdkAW2jwuYF80RERJKiTgukmY3li+K4OGr2b4F+QFHE41NgDHBK8Jy5wB7gtIiYnYHewNupy1xERBqbOjsHaWYPAd8DzgW2mln1OcOdzrmdzrkNwIao1+wB1jnnlgA457aZ2e+Bu8xsA19c5vEe8GbdvBMREWkM6rKTzg+Cf/8VNf024NYY4owEKoHngOZBvO/rGkgREUmmurwO0uJ4TX7ItArg2uAhIiKSEhqLVUREJIQKpIiISAgVSBERkRAqkCIiIiFUIEVEREKoQIqIiIRQgRQREQmhAikiIhJCBVJERCSECqSIiEgIFUgREZEQKpAiIiIhVCBFRERCqECKiIiEUIEUEREJoQIpIiISQgVSREQkhAqkiIhICBVIERGRECqQIiIiIVQgRUREQqhAioiIhFCBFBERCaECKSIiEkIFUkREJIQKpIiISAgVSBERkRAqkCIiIiFUIEVEREKoQIqIiIRQgRQREQmhAikiIhJCBVJERCSECqSIiEgIFUgREZEQKpAiIiIhVCBFRERCqECKiIiEUIEUEREJoQIpIiISQgVSREQkhAqkiIhICBVIERGRECqQIiIiIVQgRUREQqhAioiIhKjTAmlmZWb2dzNbY2bOzC6Lmp9rZuPMbLWZ7TazJWZ2fdRzcoLnbDKzXUG8znX5PkREpOGr6yPIXGAh8GNgd8j8+4CzgO8BvYFfA78xs+9FPOd+4DzgYuBEoCUwwcyyUpe2iIg0Ntl1uTDn3ERgIoCZPRHylBOAp5xzk4O/V5rZCKAUeMrMDgdGAJc7594I4nwP+AQ4FXgtte9AREQai0w7BzkDOMfMugCY2QlAEfBqML8/0BR4vfoFzrlVwCJ8cRUREUmKOj2CrIXrgEeAf5tZZTDtWufchOD/7YEqYFPU69YH8/ZjZlcCVwJ07NiRKVOmANCtWzdatGjBggULAGjTpg19+/Zl2rRpAGRnZzNw4EDmzZvH9u3bASgpKcG3EsemvLycnTt3AlBaWsrq1atZs2YNAD179iQrK4sPP/zQv8H27TnqqKOYOXMmAM2bN6e0tJRZs2axe7dvlR4wYAArVqxg3bp1APTp04eqqiqWLFkCQKdOnejcuTOzZs0CIDc3l5KSEmbOnElFRQUAAwcOZOnSpWzYsAGAgoICKioqWLZsGQBdunQhLy+P8vJyAFq2bElxcTEzZsygstKvmrKyMj744AM2b94MQGFhITt27GD58uUA5Ofn07p1a+bNmwdAq1atKCwsZOrUqTjnMDMGDRrEggUL2Lp1KwDFxcVs2bKFlStXJrSe1q9fz6pVqwDo3r07OTk5LFy4EIB27drRo0cPZsyYAUBOTg4DBgzQetJ60npK83qCHGKxdu3ahNfTwZhzLqaEksXMdgI/cs49ETHtJ/hidiO+2bQM+A1wvnPuVTO7BPgj0NRFJG5mk4BlzrmrDrbMkpISV/0FjdcV98f2/PEjE1qciEijkY7tq5nNdc6VhM3LmCNIM2sOjAa+45z7RzD5PTMrwhfMV4F1QBbQFtgY8fI8YHrdZSsiIg1dJp2DbBo8qqKmV/FFnnOBPcBp1TODSzx6A2/XQY4iItJI1OkRpJnlAkcHfzYBugZHiFucc/82s6n4yzp24ptYBwHfB24CcM5tM7PfA3eZ2QZgM/7SkPeAN+vyvYiISMNW10eQJcC7waM5cFvw/9uD+RcBc4A/AR8CtwC/AB6MiDESeBF4DngL2Amc45yLPvIUERGJW11fBzkFsIPMXwdc/iUxKoBrg4eIiEhKZNI5SBERkYyhAikiIhJCBVJERCSECqSIiEgIFUgREZEQKpAiIiIhVCBFRERCqECKiIiEUIEUEREJoQIpIiISQgVSREQkRK0LpJmVmdl+Y7eaWbaZlSU3LRERkfSK5QhyMtA6ZPrhwTwREZEGI5YCaYALmd4G2JWcdERERDLDl97uysz+HvzXAU+bWUXE7CygAHg7BbmJiIikTW3uB7k5+NeArcDuiHmfAzOA8UnOS0REJK2+tEA65y4HMLOVwD3OOTWniohIg1ebI0gAnHO3pTIRERGRTFLrAmlmrYFfA6cA7Yjq4OOca5nc1ERERNKn1gUS+D1wLPAo8CnhPVpFREQahFgK5CnAac65WalKRkREJFPEch3kBmBnqhIRERHJJLEUyFHA7WaWm6pkREREMkUsTaw/B/KBDWb2CbAncqZzrl8S8xIREUmrWArkX1OWhYiISIbRdZAiIiIhdD9IERGRELEMFLCDg1z7qIECRESkIYnlHOSPov5uih844Dz8CDsiIiINRiznIJ8Mm25m8/CDCIxLVlIiIiLploxzkJOBc5IQR0REJGMko0BeBGxKQhwREZGMEUsnnffZt5OOAXlAa+CaJOclIiKSVokMFLAX2AhMcc4tTl5KIiIi6aeBAkRERELEcgQJgJmdDPTBN7d+4JybkuykRERE0i2Wc5CdgBeB/vgbJgN0NLNyYIhz7tMDvlhERKSeiaUX6wNAFXC0c66Lc64L0D2Y9kAqkhMREUmXWJpYTwMGO+dWVE9wzi03s+uAfyU9MxERkTSK9TrIsLFYDzg+q4iISH0VS4H8FzDOzLpUTzCzrsD96AhSREQamFgK5HXAYcByM/vEzD4BPg6mXZeK5ERERNIllusgV5lZMXAq0CuYvMg592ZKMhMREUmjLz2CNLNvmtlKM2vpvDecc+Occ+OAOcG80+ogVxERkTpTmybWHwF3O+e2R89wzm0D7gRGJjkvERGRtKpNgewHHKwZdRJQmJx0REREMkNtCuSR+IHJD8QBbZKTjoiISGaoTYFcjT+KPJB+wJraLMzMyszs72a2xsycmV0WMa+pmd1pZu+Z2S4zW2tmfw4uJYmMkWNm48xsU/C8v5tZ59osX0REpLZqUyBfAf6fmTWPnmFmhwK3B8+pjVxgIfBjYHfUvEOBYuDXwb/fBroAr5pZZG/b+4HzgIuBE4GWwAQzy6plDiIiIl+qNpd5/Bo4H1hqZg8C1fd+7I3vwGPAHbVZmHNuIjARwMyeiJq3DT+cXQ0zuwr4IFjW+2Z2ODACuNw590bwnO8Bn+AvP3mtNnmIiIh8mS8tkM65DWZ2AvAwvhBa9Sx8Qfqhc259ivJrGfy7Nfi3P9AUeD0iv1Vmtgg4ARVIERFJkloNFOCc+wQ408xaAUfji+Qy59zWg78yfmZ2CHAv8A/n3Opgcnv83UM2RT19fTAvLM6VwJUAHTt2ZMqUKQB069aNFi1asGDBAgDatGlD3759mTZtGgDZ2dkMHDiQefPmsX27v8KlpKQE30ocm/Lycnbu3AlAaWkpq1evZs0af9q2Z8+eZGVl8eGHH/o32L49Rx11FDNnzgSgefPmlJaWMmvWLHbv9q3SAwYMYMWKFaxbtw6APn36UFVVxZIlSwDo1KkTnTt3ZtasWQDk5uZSUlLCzJkzqaioAGDgwIEsXbqUDRs2AFBQUEBFRQXLli0DoEuXLuTl5VFeXg5Ay5YtKS4uZsaMGVRWVgJQVlbGBx98wObNmwEoLCxkx44dLF++HID8/Hxat27NvHnzAGjVqhWFhYVMnToV5xxmxqBBg1iwYAFbt/qvUnFxMVu2bGHlypUJraf169ezatUqALp3705OTg4LFy4EoF27dvTo0YMZM2YAkJOTw4ABA7SetJ60ntK8niCHWKxduzbh9XQw5lx6xho3s53Aj5xzT4TMywb+DPQFypxzm4PplwB/BJq6iMTNbBK+YF91sGWWlJS46i9ovK64P7bnjx+Z0OJERBqNdGxfzWyuc64kbF6sd/NIuaA4PoPvHXtKdXEMrAOygLZRL8sL5omIiCRFRhVIM2sKPIcvjic556KL3lxgDxGdeYJLPHoDb9dVniIi0vDFcsPkhJlZLv4cJvji3NXMioAtwKfA88DXgHMAZ2bV5xW3Oed2O+e2mdnvgbvMbAOwGbgPeI+Dj/YjIiISk7o+giwB3g0ezYHbgv/fDnTGX/vYEX+kuDbicWFEjJHAi/gjzbeAncA5zrmqOnkHIiLSKNTpEaRzbgpfXCYS5mDzqmNUANcGDxERkZTIqHOQIiIimUIFUkREJIQKpIiISAgVSBERkRAqkCIiIiFUIEVEREKoQIqIiIRQgRQREQmhAikiIhJCBVJERCSECqSIiEgIFUgREZEQKpAiIiIhVCBFRERCqECKiIiEUIEUEREJoQIpIiISQgVSREQkhAqkiIhICBVIERGRECqQIiIiIVQgRUREQqhAioiIhFCBFBERCaECKSIiEkIFUkREJIQKpIiISAgVSBERkRAqkCIiIiFUIEVEREKoQIqIiIRQgRQREQmhAikiIhJCBVJERCSECqSIiEgIFUgREZEQKpAiIiIhVCBFRERCqECKiIiEUIEUEREJoQIpIiISQgVSREQkhAqkiEgDlJ+fzzHHHENRURElJSU108eNG0evXr3o27cvN910UxozzHzZ6U5A6k5+fj4tWrQgKyuL7OxsysvLufXWWxk/fjxHHnkkAHfccQdnnnlmmjMVkWSYPHkybdu23efvl19+mQULFpCTk8OGDRvSmF3mU4FsZKJ/MADXX389N954Y5oyEpG68vDDD3PLLbeQk5MDQLt27dKcUWZTE6uISANkZnzjG9+gf//+PProowAsXbqU6dOnU1payqBBg5gzZ06as8xsGVcgzayDmT1pZhvN7DMz+9DMBkXMNzO71cw+NbPdZjbFzPqmM+f6IuwHA/Dggw/Sr18/hg8fztatW9OYoYgky4wZM5g3bx7//Oc/eeihh5g2bRqVlZVs2bKFd955h7vvvpsLLrgA51y6U81YGVUgzewI4C3AgLOA3sC1QGRD+U3AT4LpXwvmvWFmLeo02Xoo7AdzzTXX8PHHHzN//nw6dOjAT37yk3SnKSJJ0KlTJ8A3ow4ZMoTZs2fTuXNnhg4diplx3HHH0aRJEzZt2hRz7LAOQM8//zx9+/alSZMmlJeXJ/W9pEtGFUh88VvrnPu+c262c26Fc+5fzrlF4I8egZHAb5xzf3POLQSGAS2AS9KWdT0R9oPJy8sjKyuLJk2acMUVVzB79uw0Zykiidq1axc7duyo+f/rr79OQUEB5557LpMnTwZ8c+vnn3++X5+E2po8eTLz58+vKYYFBQW88MILlJWVJedNZIBMK5DnArPM7Dkz22Bm883sR0FhBDgKaA+8Xv0C59xuYBpwQp1nW48c6Aezdu3amue8+OKLFBQUpCtFkYxVVVXFsccey9lnnw3ApEmTKC4upqCggGHDhlFZWZnmDPe1fv16Bg4cSGFhIccddxxnnXUWZ5xxBsOHD2f58uUUFBRw0UUX8eSTT/LF5jUxvXv3pmfPnkmJlSkyrRdrN+AHwBjgN0ARMC6Y9yC+OAKsj3rdeqBTWEAzuxK4EqBjx45MmTLFL6hbN1q0aMGCBQsAaNOmDX379mXatGkAZGdnM3DgQObNm8f27dsBgqaE3JjfVHl5OTt37gSgtLSU1atXs2bNGgB69uxJVlYWH374IQDt27fnqKOOYubMmQA0b96c0tJSZs2axe7duwEYMGAAK1asYN26dQD06dOHqqoqlixZAvgjxc6dOzNr1iwAcnNzad26Naeffjp79+6lqqqKESNG0LVrV4YNG8ZHH31E8+bN6dSpE1dddRVTpkyhS5cu5OXl1ewdtmzZkuLiYmbMmFGzMSgrK+ODDz5g8+bNABQWFrJjxw6WL18O+GaY1q1bM2/ePABatWpFYWEhU6dOxTmHmTFo0CAWLFhQc+6zuLiYLVu2sHLlyn3W07x587j66qvp2LEjkydPZsyYMTzyyCM458jLy+OnP/0phx9+eM16Wr9+PatWrQKge/fu5OTksHDhQsAfQffo0YMZM2YAkJOTw4ABAzJiPZWUlDBz5kwqKioAGDhwIEuXLq3pjl9QUEBFRQXLli0DyLj1FOvvqb6spxdeeIHWrVuzefNmZs+ezbBhw7jnnnvIy8vj8ccf5/HHH2fgwIEZtZ7Gjh27z3qaMmUK3bp1Y9y4cfusp71798a8npxznHCCPya55JJL+PnPf16znqpfF896At+7trbWrl2b8O/pYCyTTtCa2edAuXPuhIhpdwBDnHO9zewE/DnKrzjn/h3xnMeBTs650w8Wv6SkxCXaNn7F/bE9f/zI2JdRVVVFSUkJnTp1YsKECZx44ok1R38bNmzguOOO46WXXoo9cD123333UV5ezvbt25kwYQI9evTg5Zdfpnfv3vz2t79l9uzZPPHEE+lOUxqg1atXM2zYMEaNGsV9993HH/7wB44//ng+/vhjAKZPn87o0aOZOHFimjOtO2vWrKFTp05s2LCB0047jXHjxtU0rQ4ePJh77rlnn8EJaqsutq/RzGyucy402UxrYl0LfBg1bRHQNfj/uuDfvKjn5EXMq/fGjh1L7969a/6ePn068+fPZ/78+QwYMIChQ4emMbu6t3r1al555RX+53/+p2aamdXsqW7bto2OHTumK720iW72c84xatQoevToQe/evXnggQfSnGHDMHLkSO666y6aNPGby7Zt21JZWVlzNPjXv/615uiqsQjrz9AQZVqBfAuIbsTuAXwS/H8FvhCeVj3TzJoBJwJv10WCqRZWDKpt376dSZMmce6559Z9YmkUvYECeOyxxzjzzDPp3LkzTz31FLfccksaM0yP6B2pJ554glWrVrF48WIWLVrERRddlMbsGoYJEybQrl07+vfvXzPNzHj22We5/vrrOe6442pGp2osDtSfoSHKtHOQY4C3zWwU8BxwLHAd8DMA55wzs/uBn5nZYmAp8HNgJ/DntGScZNXFoPoLGOmll17ilFNOoWXLlmnILD0iN1DV548BxowZw8SJEyktLeXuu+/mhhtu4LHHHktfonWsekequtkP/Cgpf/7zn2t2JDRKSuLeeust/v73vzNx4kQ+++wztm/fzne/+12efvpppk+fDsDrr7/O0qVL05zpvlLZVLl+/XqGDBkCQGVlJZdccglnnHEGL774Itdeey0bN27krLPOoqioiNdeey22RDJMRhVI59wcMzsXuAP4BfDv4N/fRjztLqA58BDQCpgFfMM5t39FqWcOVAyqPfPMM6FHlrWRjrb9ZAjbQJ111lksXryY0tJSAC688ELOOOOMNGdat8J2pD7++GOee+45XnzxRY488kgeeOABunfvnsYs67/Ro0czevRoAKZMmcI999zD008/zYYNG2jXrh0VFRXceeedjBo1Ks2Z1p1u3brVdPKJNGTIkJrC2VBkWhMrzrlXnHOFzrlmzrkezrkHXERPIufd6pzrEDxnUHA9ZL1XXQzy8/O56KKLmDRpEt/97ncB2LRpE7Nnz+ass85Kc5Z1a/To0axevZqVK1fy7LPPcvLJJ/Pyyy+zbdu2mr32N954Y5+mxoYurNkPoKKigmbNmlFeXs4VV1zB8OHD415G9PnNSy+9lJ49e1JQUMDw4cPZs2dPQu+hvrv77rvp3bs3/fr145xzzuHkk09Od0qSAhlXIBuzsGLw9NNPA74jwNlnn02zZs3SnGX6ZWdnM378eM477zwKCwt56qmnuPvuu9OdVp050I5U9Sgp4Pfm33vvvbiXEX1+89JLL2Xx4sW8//777N69u1E1Z1cbPHgwEyZMAHyBXLRoEUuWLGHkyJHpTUxSRgWynnj22We5+OKL051GWkVuoIYMGcL777/PggULaq7vaiwOtCMVOUrK1KlT6dGjR1zxwzqKnXnmmZhZzRBlq1evTsp7EclkGXUOUr4wePBgBg8eXPN32DlJkUi33HILl156KWPGjCE3Nzfuo7yDdRTbs2cPTz31FGPHjk00Xamn6mt/hnioQIrUY5E7UkcccQSvvPJKQvG+rKPYD37wA8rKyjjxxBMTWo5IfaACKSI1DnZZw2233cbGjRt55JFH0p1mnWlMR0uyPxVIyWjaQNWtA13W8Nhjj/Haa6/xr3/9a58BG0QaMhXIDFJfi8Fnn31GWVkZFRUVVFZWcv7553Pbbbdx2WWXMXXq1JpBxJ944gmKiorSm6zE5eqrr+YrX/kKAwYMAGDo0KH88pe/THNWIqmlAikJy8nJYdKkSeTm5rJnzx4GDhzIN7/5TcB3hz///PPTnGHDEsuOVCI7UZHnNzPtdk4NxYF2Lqtdd911PP744zV3xZC6pQIpCTMzcnP9bcD27NnDnj17knaPOZGG7EA7l8cffzzl5eU1txeT9NDJBEmKqqoqioqKaNeuHaeddlrNMHCjRo2iX79+XH/99TX3ZBMR70A7l1VVVfz0pz/lrrvuSnOGjZuOICUpsrKymD9/Pv/5z38YMmQICxcuZPTo0bRv357PP/+cK6+8kjvvvFPnrTJcXTXfyheqqqro378/H330ET/84Q8pLS1l7NixfOtb36JDhw7pTq9R0xGkJNURRxzBSSedxKuvvkqHDh0wM3Jycrj88ssb7D3jRBJRvXO5evVqZs+ezbRp03j++ee59tpr051ao6cCKQnbuHEj//nPfwDYvXs3b7zxBr169WLt2rWAv5HvSy+91GDvGSeSDNU7l5MnT+ajjz7i6KOPJj8/n//+978cffTR6U6vUVITqyRs7dq1DBs2jKqqKvbu3csFF1zA2Wefzcknn8zGjRtxzlFUVMTvfve7dKcqklE2btxI06ZNOeKII2p2Lm+++WbWrVtX85zc3Fw++uijNGbZeKlASsL69evHu+++u9/0SZMmpSEbkfrjQDuXkhlUIEVE0uRAO5eRdA1k+ugcpIiISAgdQUrC6usQeSIiB6MCKSKSBtqxzHxqYhUREQmhAikiIhJCBVJERCSECqSIiEgIFUgRqfeGDx9Ou3bt9hnOcP78+Rx//PEUFRVRUlKisYAlZiqQIikQtsG+8MILKSoqoqioiPz8fIqKitKXYANz2WWX8eqrr+4z7aabbuJXv/oV8+fP5/bbb+emm25KU3ZSX6lAiqRA2Ab7ueeeY/78+cyfP5/zzjuPoUOHpim79AjbaQAYN24cvXr1om/fvnEXsbKyMlq3br3PNDNj+/btAGzbto2OHTvGl7g0WroOUiQFysrKWLlyZeg85xx/+ctfGt1YtZdddhk/+tGP+P73v18zbfLkybz88sssWLCAnJwcNmzYkLTl3X///Zx++unceOON7N27l7fffjtpsaVx0BGkSB2bPn06eXl5dO/ePd2p1Kmwo7yHH36YW265hZycHADatWuXtOU9/PDDjBkzhlWrVjFmzBhGjBiRtNjSOKhAitSxZ555hosvvjjdaWSEpUuXMn36dEpLSxk0aBBz5sxJWuwnn3yyphn7O9/5jjrpSMzUxCpShyorK3nhhReYO3duulPJCJWVlWzZsoV33nmHOXPmcMEFF7B8+XLMLOHYHTt2ZOrUqQwePJhJkyY1uiN2SZwKpEgdevPNN+nVqxedO3dOdyoZoXPnzgwdOhQz47jjjqNJkyZs2rSJI488MqY4F198MVOmTGHTpk107tyZ2267jfHjx/PjH/+YyspKmjVrxqOPPpqidyENlQqkSAqEbbBHjBjBs88+q+bVCOeeey6TJ0/mpJNOYunSpXz++ee0bds25jjPPPNM6HQdqUsiVCBFAmPHjmX8+PE457jiiisYOXJk3LEOtMF+4okn4o5Z34XtNAwfPpzhw4dTUFDAIYccwpNPPpmU5lWRZFCBFAEWLlzI+PHjmT17NocccghnnHEGZ599NkcffXS6U2swDrTT8PTTTyccO5ZbR+m2UVJbKpAiwKJFiygtLeXQQw8FYNCgQbzwwgtxX7iuDbZI/acCKQIUFBQwatQoNm/eTPPmzZk4cSIlJSXpTqtB0U6D1DcqkCJA7969ufnmm/nGN77BYYcdRlFREVlZWelOS0TSSAMFiARGjBjB3LlzmTZtGq1ataJHjx7pTklE0khHkCKBDRs20K5dO/7973/zwgsv8M4776Q7JRFJIxVIkcB5553H5s2badq0KQ899BBHHHFEulMSkTRSgRQJTJ8+Pd0piEgG0TlIERGREDqClEZLlx2IyMHoCFJERCSECqSIiEgIFUgREZEQ9bZAmtkPzGyFmX1mZnPN7MR05yQiIg1HvSyQZnYhMBa4AzgWeBv4p5l1TWtiIiLSYNTLAgncADzhnBvvnFvknLsWWAtck+a8RESkgah3BdLMDgH6A69HzXodOKHuMxIRkYao3hVIoC2QBayPmr4eaF/36YiISENkzrl05xATM+sIrAEGOeemRUz/JXCpc65n1POvBK4M/uwJLElRam2BTYqt2A0wdn3MWbEVu7a+4pw7MmxGfRxJZxNQBeRFTc8D1kU/2Tn3KPBoqpMys3LnXErusKvYip3O2PUxZ8VW7GSod02szrnPgbnAaVGzTsP3ZhUREUlYfTyCBLgPeMrMZgNvAVcDHYHfpTUrERFpMOplgXTOPWdmbYCfAx2AhcCZzrlP0phWKptxFVux0xm7Puas2IqdsHrXSUdERKQu1LtzkCIiInVBBVJERCSECqSIiEgIFcgkMTOL+H+9+Vyj8raDPTdT1MecoX59L0REBTJpnHMuGCcW59ze6unJ2ICncsMa5N2y+v/JjG1mWcmMV60+5gz+e2FmecFymplZ0nqRm1lWKncWqmPXpx0SkUSpF2sSmFl74HygGD+c3TvAX51zM5O8HMOvs71h82ItFmZ2NHAxcBKQD8wE/gFMds6tjzduyHKawL47DvHmXR9zDl5TBHwfOBM/ZnA58AbwL+Bd51xVEvM251xVInFC4mYDhznntiUzbhA7K9n5RsRuARwGbAAOBf4btk7jiFvvcg5ipzLvDkALYDd+vOx1zrnPkhQ72zlXmYxYMS1XBTJxZvYKcDSwCPgUf1eRAuAj4DfAU/F+Kc3sh8AHwCzn3O6I6U3wB1Bxr0Azm4r/Qs/AD9N3MjAQ2Iy/3+a98W64zezXwDzgdefcjojpWcDeePOujzkHMeYCO/DFfD1wVvCoAp4Afu6c2xVn3n/A75T9xTm3NWJ6dpB3QhtXMzsDuBwoBA7BF/WX8TsluxKJHbWc0J2S6qPWOD6XS/B5FweTZgL/BN50zi2pjp3ges0KUktWAUt5zkGMZOf9A2A4fru3Bz/a2TvAJGCqc64iiXmTqiK/H+ecHgk88BvojUDn4O9mwOH4IjkeWA7cEGfsgcBeYBrwNHAdUBj1nBzgF0CHGGOfFOTdKmp6R+BX+AHhfwtkJZD3u8B04B784PKRz2kOPAB0bcg5B68bHOTdLGTeCOAT/EawRQJ5LwX+DTwPfDsk78eBPnHGX4K/ndwPgu/aLHxhXwh8J57vdhD7mGB9nQpkR83LItiBjzN2GbAS+CPwTWBY8BlXAKuAH8YZtwSYgG8xaho1LzsTc66DvAcHv707gd5B7uOD7+Qa4NfR6zeG2F8HFgD/AxwSkncTwIDWibyHAy4/2QEb2wO4FZh0gHktgVHATqA4jthj8OPL3h58uecAk4FH8M11+UBpsIHMjTH2jfg9vObB31lAk4j53wW2ASfHkfddQZ5XAw8CU4D5wGvA/+L3Mo8L8q51UaiPOQexrw5i5QV/50T+2IFB+KPKIXHk/X9Bjt8OPp8J+I3sUuAh4Hjga/HkHcT/KzA+ZHov/Ogma4Dvx/nbeRLfHDcHeDP4LRVHPWdA8H2PaeMH/AV4NGT6ocFyNgO/iDPnz4PP92PgMfbfkToBeJYYd9RSlXMd5P1n4JGQ6U2D7/4G4PcJ5F0FrAUqgVeBs6Oe8/VgelxF+GCPejnUXIZ5E/ihmZ3hnHs1coZzbruZ3YnfAA7CN9/Foi1Q7pz7ZdAB6GT8oOzH4ptgLsBvqP7lnNsZY+yJwM3AUOBPLmiyqG4Gcc49bWbfCfKeFEfey51zvwuazYrxG7qvAd8ChgBHAa+6iKbMBpoz+KI1CrgUuM85VxHkXd10OzVoOj4ReDHG2IfhNx6vOOcqzexv+GI+AH/09yzQCfhnHHmD3zNfVP1HRLPtYjO7Dr8RHGlmrzrnNsQY+xj8TuBq/BHOacC3zezf+CPWf+B3BE90wZYwBofgN6zVeecEef8XuDVYxxeZ2VPOuZUxxO2BPyIqx+8wlQFPm9lW4O/AU/j1XOBibwZMVc6pzvtzoLWZNXPOfWZmzYBK59we4Hdmtgf4qZn1dc59EGPsfPyQohOCvL8DPB/EfB7fonMR0NGl4hxlsituY3vgm6/+iD/feAvQH9+ZoXr+EfgNwNA4YhcA3wyZ3g7fUeUJ/JHBmXHEzgLuxe+VPorvPNImYn57fLPO+XHEbg8MDpl+OL6Z9PZ48o7IeUs9yrn6PP/N+JaEN/HnajpGPKdbkHfMzZVALnD8Ab6XffBNU3F9R4I41+HP9fY4wPvqEnz3Y2ohAboDU4Hhwd8t8DsIN+OPpGbjN+Z7iWoyrmX8S4Pv9gnR36Hg39bACmBADDHz8Rvqa4K/m+E75V2AP/89J1iPe4FvZULOdZT36fjbEF4QNT07+PcwfPP/oBjjdsQf6V5V/TkArfA7rbcEeVcEeZ8Tz/f7yx7qpJMEZtYF3wx3KrAVv+LW4fcGBwA9XdSNnGOIne38kUETfHt7TacLMzsHeNo5d3icsXOAa/FHSM3xhXwLvpmyFN+UWXzgCLVezj4dioK8n3HO5cYR61DgGvwRXXP8Dy+hnKM7D0R81lXJyDki7hD8RrAb/ruxDX/0dyywxTlXFm/siGVEv5dv4TvvNIsz3pH4JrRu+KPR1/C9bncE84cCTzrnWsQR+2h8E/nSqOl5+CP4q/A7LUfEGNfwG+XxwBn483h/w7e0/CdYvxfimzNjyjvI7TDn3PKo6S3wn9EPgAsTzPmb+NaSpORcB3nnAHfgtyXl+GbR551zm82sLX77cr9zrmUcebcBDnXOrYqano0vltcC18Wad62XrwKZPGbWD38e7AT8CeRW+HOI9znn3k/icgx/YvqvQEvn3KkJxusFnA0U4XPugD/Sedg5tyKxbPdbVhN8x4zWzrkLEojTFTgHf46tLf6G2UnPOeKzTjjnIF4X/DmTvkDn4PEqvqdzrE2UX7YsA27Dn/u8KoE4R+M3oIPw54FWA//Fb9B7AROcczclmGt1p5zKiGkvAbucc5fGGbMFcBm+t3Ae/khjG/5IJA941jl3a4J5R++QvARUOOcujDPeYfherN/GtxRVpiDnA33WcecdxDgbuAS/w3ck/rx6Jb6APuacuyeRvA+wzJfwO7LnJTs2qEDGLTj66oc/H7YDeA9/vnBdML8nvrPE5y7GDzki9hD8j+MDfDPWKucvBWji/EXn2cDhzrnNceRf3cFlT9T0I51zG2ONFxLbuQN0IQ/mt3DO/aeW8XLx50wuBv6D71U5F/9570kk56jYW4Bl+I4M7zvn1sabc9QysgFc1DkSM8txwfnIeH3ZpRzBDslhLr7zj9Gx+uB3Svrgm/ua488hTnb+PFlSBDm3wjezft8591aC8XriW3KOwu+QNMN3xJrr/A3Yk8LMjgBeAG52zs2JM0aO85dEtMd/L/vim7FzSDBnM2sR/T0IPuuWieQduZNg/lrIPkBX/OfdDN+DeplL/rW5ucA4YKxzbn4yY9csQwUyPmb2AL44rsVvLPLxzaovA3e6BO5NGRL7K/jrK1/CN1UsP/CrvzR2f+fc3Khph+AL2p4DvCyR2Mm4hvBJ/MZiGf7z6Axsx/cMfcg5NzXJsbcGsR91zk1OIPZA59yMqGn7fNYW5wXQB4i9T7Gs3pGKM/cu+HOlx+HPe30AvO2cWxCs0+Yu9o5h0bG/hu9RuSSI/55zbmv1BtfMcmNZRtSGer+dkng/j5C4B9shOTTWnQUz6w3cgD/yWo7/vN8CpsWzQ3aQ2B/hT0nMB6ZHNluaWXMXcZ11HMtJ+BrHOJeb8E7mQbkUnNhs6A/8HtJ24BsEnUTwTQq34L/cu/HnT2K+LqeWsa/EN/vF2vW9O76ZaSFwH3Bs1HzD96Q7jqhrjpIUu2mssYPPYwe+KbW6s8LhwBV8cT3ercRx3VwtY/+KqMtJahm7V/B57MCfu/t61Pwm+KOCcwgu/0hi7Or1GHPs4PVH4XtcL8KfT5qHv5zjA/wlF/kJ/HbCYq/Gt8D8Fvhq9HuJIfaR7H/pQvXnXN1hxIj9MoawuEbU9YMR36FYcv4qfgdhGjAa34v5Hfy1f38DTk3gsw6LPTP4zP8CfCOBzzoP+B7+tEP051194JUF5MSRd2jskOc1izXvmHNJVeCG/AB+ht+7q/47+iLnO4DFRPRUzJDYv8QfKY3BnxtdE/wYbwK6BM/pFGx8O2dCbGAkMCPi7+iLha/G98DrEUu+dRD7Z/hBB/4XP/BAJb6F4R6CIoA/x7S3+vPJhNjBa3+Hv8SifcS0rvgepp/geyx+O9a4tYy9MYHYDwXveV3w/z5R87OCZX2HGIpkLeI2iYgb07V4wMPB59EiYloe/tzpNPy53hFxfh5fFntXArHHBZ/JFvzlFmcSVQyDz+TG6OnpjB3z+0xl8Ib6wJ8bXAYcHTEtmy/2aKr3kq/LsNh/wnfrbo8/tzEM3436Pfxe/D/w3cE/yJTY+EssVgGnRH0e1YMFtMEPO/erOHJOZeyH8OeMWgePMvzOzaLgx/8e/lrNeD7rlMUO4k8Hbgz+35T9d9KewfcMrTlayJDYs/FHob/CH4HtxTcr/ozgaAQ/EtDyTIgbvG4icFvw/yyiCjf+sqZ38D05Myn2TPxR6eX4znEV+NNA4wgu+QH+H/BRJsWOOZdUL6AhPoIN5yL8kdwFhOzFBD+kqzIlNn7Dfwnwv1HTW+M7MPwI3+yylxj3KlMcuxl+UO+1+CO65iHPmU8cw3ClKnawMToT+EHU9EPwe75n47vz7wUuz5TYEbFuDd535JFHU77YcRiIP3e43/WX6YqNP0//Gv7oqAm+teJ0/M7Ev4PP4y38Ucn16Y4bEf/HQZxeUevykOD/ffCnVk7KlNj46xOfB64M/s7GN/vfHKzbKuB9/BHqjzMldly/hVQvoKE+ghX5HPAhftSP/8OPdNMDfyS1kYgBAzIldsQymoZMGxr84GPeo0xlbHxvyfuCH/sS/LmrofjztM/gjwLjyjmVsSOWsd/5y2Ajm4zPOumx8YNdfIpvqdjvwvFgg/VZnOsyJbHxPTGHET5+7lfxO5tT8M3R++0I1XXciDhH4ZvLVxAMmhA1vwA/Uk08n3VKYuMv7zkHKA2Zdyi+n8Ff4vlMUhk7nod6sSYguIj1bPwQWd3wo1O0wo8Q8ohz7tlMiX2gHnxBr7wq55wzs3uAEufc4AyKneX83Tly8UcXJ+I71RTjj6bexI8V+s9Y4qYydvW1k2GfScRzbsWPiHJ6psSujh+sr6Px49Mejx/dZTq+6bMPfsDrFS7Ga0JTGTt6OfjmxOjLav4EdIr1O1gHcVvgmxQvxR9Nv47/7hXgv5fznXPfz7TYEcvYrwermT2BPx9+YqbGrtXyVSBjY2ad8be2An+Y/yG+Z2k3/LBf/wU2Oee2ZGhswx9dLHHBNZvBfMNfnLzGxXgtVCpjhyzrEHyvwt34JtJtLkm3XEpl7JBlDQY2utjHpqyz2ObH1DwVv5N2HP7c8hZ8E+7TLrFLmVIWO2IZht/RqcIf8U0DRjvn/pYJcYM4TYKdtGb4sWnL8K1Fxfgjv6eBFyJ/TxkQe5+RsULmN8df7vawc+7FTIkdDxXIGJjZNfjrtwrxxWo5vgPKZPwNklcd5OWZEnsXvoPBavwJ+pdccJ+5TIodfV3Wl/1wMjV2MqUydhC/CX5H5kj8hv9j/PVy24KNrMOfO9yUwbEPxfegnuoiRiYyP/jGqc65V9Id90uWWXPdsJkd7pJ4g+pUxo5aTlN8a1FSbxif6tihy1OBrJ2gyfMjfM+vh/E/mlPx90Lrgz+vcp1z7sNYL5pNY+ze+GJ2fRA7pruNpyq2mbXCd0R6Bb+X+3b1e44sZsFF0KtdDKPEpDF25MXmvYG1LoaLwFMZO3hdC+D3+J69e/HFwPA7a2/ij+qWBc+N6YL7Oo69Gl9sP8OfjnjKObe4tvFSHTeI3RR/fvATF3KReyIX3aczdiJSGTshLsUnORvKAz8o7qwDzBuIP4+yHGir2InFDuJW4LvXV+GPNm7HD/pe/Zwu+A4I3RQ7sdjBa0fhC/DXgr974ccVfhg/rN8/gCNjjZvm2HPwt3KKOXaq4gaxRuJbW/6A75DSnv0vwWiJH7R8vw5v9SD2WcQ+0EjKYifyqJOFNIQHfmScD/H3S4P9b3rbNZh/iWInFht/Hup3+Ivd++E7GSzDF4Z38CMJ/S+wM46cFTs8/nTghpDpWXwxFN+rjSV2inOeiT91Mj1YfyvwPakH4sdWBn/Z0TuKnXjsRB51tqD6/sBfn7gQf/F75DVckXe0fxu4SbHjj40vstcDo6KmH45vvn0c3+S8lxjvrq7YB4yfjT8yeovgqIio4fWAU4J1XdjQY6c45yPxnXouCf7ujL8h8NJg/c3FX/O3GD8It2InEDvRR50tqD4/CMY9Bc7FD4e1A39+oj9fDDP13WB6vmInHDuHYCiy6A1TMG0wcQyHp9gHjX88vtn2TkLGb8U33+7EX87Q4GOnMG4H/M7O6SHzjsUPQLA5WJeKnWDsRB91tqCG8ACOwDdvXY0fXWNn8Pgo+DHdqtiJxeaLjmPdojdMEfN+SXzDeil2ePwm+KOmK/CDUGzFtwqchr/+9jv4ARTmNIbYqcw5iN+ciIG2qx8R83+Nvym1YichdiIP9WL9EmbWDj+y/E/wgzTvxt+TcAb+3E9T/DWAr7qoO6MrdmyxI+LeAGzAj5axFj/01AvO3wvT8BuuT51zExQ7/tgHWN4R+GHVLsHfQHsHvufmHPy1frMaU+wUxg3tTWpmh+JHGfqDc+5OxU5O7HipQH6JYNSGvviedlvw44segx/2bQPw8wR+JIr95XGPxfcgXA3c7Zx7PYk5N+rYQfyWwI7IDVNwuUsz/OAUBcCuONdnvYtd1zmHPKcZcCHwjIvhxsiKnSJ1fchanx74w/ydQFnUtK/gx2B8Hd+UWKzYicU+SNwu+Cat1/FjpSYz50YbOyLeI8AI/A5OywM8p1X1sht67AzI+YgUrsdGFTsZj7QstL488Hvu73OAOwvgO06U45taFDuB2LWIe0gKc250sYPXX4zv+PAf/PWqj+AHaj+aL+6ukQu8BBzT0GOnIech+AHPq2NXD6NWoNiJxU7Wo84XWJ8ewcr5F/4ane6E3znhWvyAv4qdQOz6mHN9jh28tvraym74m8++jx/d5l18p4iTgWuAzxtD7PqYs2Kn9pGWhdanB7679/xgI3UZvnkrN5h3KPBX/FBZip1g7PqYc32Nje+l+TPgN1HT+wL3489vbsJ3Cvp9Q49dH3NW7NQ/0rLQ+vbAn5h/Dt9bcxO+w8Tj+HsIziLG5hbFblg519fY+Nun9Qr+fwhR59TwHSP2AkWNIXZ9zFmxU/tQL9YYBF3uz8JfHP8ZfiSN512cgxYrdt3HVewvXUYT/IaqysyuwI9ccmhjjV0fc1bs5FGBjFOsdx1Q7MyLq9hfuowb8ANG363Y9TNnxU4wBxVIEQkT3IKoKkU7PfUudn3MWbETzEEFUkREZH9N0p2AiIhIJlKBFBERCaECKSIiEkIFUkREJIQKpIiISAgVSBERkRD/H/dJ6UGN970zAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 504x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create noisy simulator backend\n",
|
|
"sim_noise = AerSimulator(noise_model=noise_bit_flip)\n",
|
|
"\n",
|
|
"# Transpile circuit for noisy basis gates\n",
|
|
"circ_tnoise = transpile(circ, sim_noise)\n",
|
|
"\n",
|
|
"# Run and get counts\n",
|
|
"result_bit_flip = sim_noise.run(circ_tnoise).result()\n",
|
|
"counts_bit_flip = result_bit_flip.get_counts(0)\n",
|
|
"\n",
|
|
"# Plot noisy output\n",
|
|
"plot_histogram(counts_bit_flip)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Example 2: T1/T2 thermal relaxation\n",
|
|
"\n",
|
|
"Now consider a more realistic error model based on thermal relaxation with the qubit environment:\n",
|
|
"* Each qubit is parameterized by a thermal relaxation time constant $T_1$ and a dephasing time constant $T_2$.\n",
|
|
"* Note that we must have $T_2 \\le 2 T_1$.\n",
|
|
"* Error rates on instructions are determined by gate times and qubit $T_1$, $T_2$ values."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:54.577456Z",
|
|
"start_time": "2019-08-19T17:00:54.491018Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"NoiseModel:\n",
|
|
" Basis gates: ['cx', 'id', 'rz', 'sx', 'u2', 'u3']\n",
|
|
" Instructions with noise: ['reset', 'measure', 'u3', 'cx', 'u2']\n",
|
|
" Qubits with noise: [0, 1, 2, 3]\n",
|
|
" Specific qubit errors: [('reset', (0,)), ('reset', (1,)), ('reset', (2,)), ('reset', (3,)), ('measure', (0,)), ('measure', (1,)), ('measure', (2,)), ('measure', (3,)), ('u2', (0,)), ('u2', (1,)), ('u2', (2,)), ('u2', (3,)), ('u3', (0,)), ('u3', (1,)), ('u3', (2,)), ('u3', (3,)), ('cx', (0, 0)), ('cx', (0, 1)), ('cx', (0, 2)), ('cx', (0, 3)), ('cx', (1, 0)), ('cx', (1, 1)), ('cx', (1, 2)), ('cx', (1, 3)), ('cx', (2, 0)), ('cx', (2, 1)), ('cx', (2, 2)), ('cx', (2, 3)), ('cx', (3, 0)), ('cx', (3, 1)), ('cx', (3, 2)), ('cx', (3, 3))]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# T1 and T2 values for qubits 0-3\n",
|
|
"T1s = np.random.normal(50e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec\n",
|
|
"T2s = np.random.normal(70e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec\n",
|
|
"\n",
|
|
"# Truncate random T2s <= T1s\n",
|
|
"T2s = np.array([min(T2s[j], 2 * T1s[j]) for j in range(4)])\n",
|
|
"\n",
|
|
"# Instruction times (in nanoseconds)\n",
|
|
"time_u1 = 0 # virtual gate\n",
|
|
"time_u2 = 50 # (single X90 pulse)\n",
|
|
"time_u3 = 100 # (two X90 pulses)\n",
|
|
"time_cx = 300\n",
|
|
"time_reset = 1000 # 1 microsecond\n",
|
|
"time_measure = 1000 # 1 microsecond\n",
|
|
"\n",
|
|
"# QuantumError objects\n",
|
|
"errors_reset = [thermal_relaxation_error(t1, t2, time_reset)\n",
|
|
" for t1, t2 in zip(T1s, T2s)]\n",
|
|
"errors_measure = [thermal_relaxation_error(t1, t2, time_measure)\n",
|
|
" for t1, t2 in zip(T1s, T2s)]\n",
|
|
"errors_u1 = [thermal_relaxation_error(t1, t2, time_u1)\n",
|
|
" for t1, t2 in zip(T1s, T2s)]\n",
|
|
"errors_u2 = [thermal_relaxation_error(t1, t2, time_u2)\n",
|
|
" for t1, t2 in zip(T1s, T2s)]\n",
|
|
"errors_u3 = [thermal_relaxation_error(t1, t2, time_u3)\n",
|
|
" for t1, t2 in zip(T1s, T2s)]\n",
|
|
"errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand(\n",
|
|
" thermal_relaxation_error(t1b, t2b, time_cx))\n",
|
|
" for t1a, t2a in zip(T1s, T2s)]\n",
|
|
" for t1b, t2b in zip(T1s, T2s)]\n",
|
|
"\n",
|
|
"# Add errors to noise model\n",
|
|
"noise_thermal = NoiseModel()\n",
|
|
"for j in range(4):\n",
|
|
" noise_thermal.add_quantum_error(errors_reset[j], \"reset\", [j])\n",
|
|
" noise_thermal.add_quantum_error(errors_measure[j], \"measure\", [j])\n",
|
|
" noise_thermal.add_quantum_error(errors_u1[j], \"u1\", [j])\n",
|
|
" noise_thermal.add_quantum_error(errors_u2[j], \"u2\", [j])\n",
|
|
" noise_thermal.add_quantum_error(errors_u3[j], \"u3\", [j])\n",
|
|
" for k in range(4):\n",
|
|
" noise_thermal.add_quantum_error(errors_cx[j][k], \"cx\", [j, k])\n",
|
|
"\n",
|
|
"print(noise_thermal)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Executing the noisy simulation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:00:55.689241Z",
|
|
"start_time": "2019-08-19T17:00:55.515394Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAFLCAYAAABShRycAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqxklEQVR4nO3de5xVdb3/8deHGR1RQEHljg2UIBdhHKZoPCNwLNSUTiGdTC3zkphpeenX6frrR53Uk6dSMysjPRaeI6V5O3hJRQGxERsRDJCLcYkhYOImg+Eo+Pn98V1Dm813YAY2e+0N7+fjsR/MrLX2nvfsNezP+n7Xd32XuTsiIiKyq3ZpBxARESlEKpAiIiIRKpAiIiIRKpAiIiIRKpAiIiIRKpAiIiIRpWkHyKfjjjvOy8vL044hIiIF4uWXX17v7sfH1h1SBbK8vJy6urq0Y4iISIEws5UtrVMXq4iISIQKpIiI5NWOHTs45ZRTGDt2LADTpk2jsrKSiooKampqeP311wG47rrrqKiooKKigv79+3PMMcfkNech1cUqIiLpu+222xg4cCBbtmwB4Morr+SRRx5h4MCB/PSnP+V73/se99xzD7fccsvO59x+++288sorec2pFqSIiORNfX09jz32GJ/73Od2LjOzncXyjTfeoGfPnrs977777uP888/PW05QC1JERPLo2muv5eabb6axsXHnsl/+8pecffbZtG/fnk6dOvHiiy/u8pyVK1eyfPlyTj/99LxmVQtyP2X3pZ922mk7+8x79uzJxz/+cQA2bdrEuHHjGDp0KB/4wAeYP39+iqlFRPJv6tSpdO3aleHDh++y/JZbbuHxxx+nvr6eSy65hOuvv36X9VOmTOETn/gEJSUl+YyrFuT+yu5Lf/7553euGz9+PB/72McAuPHGG6moqOChhx5i0aJFXHXVVUybNi2VzCIiaXjhhRd49NFHefzxx3nrrbfYsmUL55xzDosWLWLEiBEAnHfeeZx11lm7PG/KlCnccccdec+rFuR+iPWlN9uyZQvPPvvszhbkwoULd3YPnHTSSaxYsYJ169blM66ISKpuuukm6uvrWbFiBVOmTOH000/nkUce4Y033mDJkiUAPP300wwcOHDncxYtWsSmTZuorq7Oe161IPdDrC+92cMPP8yHPvQhOnXqBMCwYcN48MEHOe2003jppZdYuXIl9fX1dOvWLd+xRUQKRmlpKZMmTWL8+PG0a9eOzp07c/fdd+9cP2XKFD71qU9hZvnPlvefeJDI7EufPn36buvvu+++XVqWX/va17jmmmuoqKjg5JNP5pRTTsl7f7qISKEYPXo0o0ePBmDcuHGMGzcuut3EiRPzFyqLuXtqPzzfqqqqPFdTzX39619n8uTJlJaW7uxLP/fcc7n33ntZv349AwYMYPXq1RxxxBG7Pdfd6du3L6+++urOFqaIiOSfmb3s7lWxdToHuY9ifen33nsvAA888ABjx47dpThu3ryZt99+GwhDmkeOHKniKCJSwFQgD4ApU6bsdkHra6+9xpAhQxgwYABPPPEEt912W0rpRESkNdTFKiIihyx1sYqIiLSRCqSIiEiECqSIiEiECqSIiEiECqSIiEiECqSIiEiECqSIiEiECqSIiEiECqSIiEiE7uYhIiIH3OW35v41J12b+9fMpBakiIhIhAqkiIhIhAqkiIhIhM5BtlEx9qOLiEjbqQUpIiISoQIpIiISoQIpIiISoQIpIiISoQIpIiISoQIpIiISoQIpIiISoQIpIiISoQIpIiISkVqBNLOvm5mb2U8ylt2TLMt8vJj1vDIzu93M1pvZm2b2qJn1zv9vICIiB7NUCqSZfRCYALwaWf0M0CPjcXbW+luB8cD5wGlAJ2CqmZUcqLwiInLoyXuBNLOjgf8GLgU2RTZpcve1GY+NWc+9DPiKuz/t7nOAzwBDgQ/nIb6IiBwi0mhB/gJ4wN2fa2F9jZk1mNkSM5tkZl0z1g0HDgOeal7g7quA14BTD1hiERE55OT1bh5mdjnwPuDTLWzyJPAgsBwoB74HPGtmw929CegO7ADWZz1vXbIu9jMnELpz6dmzJ9OnTwegX79+dOzYkXnz5gFw7LHHMnjwYGbOnAlAaWkpNTU1zJkzhy1btgBQVVUFdGjz7703DQ0NLFy4EIDu3bvTt29famtrAWjfvj0jRoxg9uzZbNu2DYDq6mqWL1/O2rVrARg0aBA7duxg8eLFAPTq1YvevXsze/ZsADp06EBVVRW1tbU0NTUBUFNTw5IlS2hoaABgyJAhNDU1sXTpUgD69OlDt27dqKurA6BTp05UVlYya9Ystm/fDsDIkSNZsGABGzZsAGDYsGE0NjaybNkyAMrLy+nSpQtz5swBoHPnzgwbNowZM2bg7pgZo0aNYt68eWzaFDoTKisr2bhxIytWrAD2fT+tW7eOVatWAXDiiSdSVlbG/PnzAejatSv9+/dn1qxZAJSVlVFdXU1dXR1bt24FYMSIEdTX17N69WoABgwYQElJifaT9pP20z7uJ2hPrq1Zs2a/99OemLvnPHT0B5kNAGYBNe6+OFk2HZjv7le38JyewErgPHd/0MwuAH4NHOYZwc3sWWCpu1+xpwxVVVXe/Ae6r3S7KxGRtivUz04ze9ndq2Lr8tnFWg0cBywws+1mth0YBXwh+b4s+wnu/legHjgxWbQWKEleJ1O3ZJ2IiEhO5LNAPgycDFRkPOqAKcnXb2c/wcyOA3oBa5JFLwPvAGMytukNDAT+cGBii4jIoShv5yDdfTOwOXOZmb0JbHT3+WbWwcwmAr8jFMRy4CagAXgoeY03zOwu4GYzawA2AD8iXC7yTF5+EREROSTkdZDOXuwgtDAvAo4hFMnngE+6e2PGdtcC24HfEM76TgMucvcd+QwrIiIHt1QLpLuPzvh6G3BmK57TBHwxeYiIiBwQmotVREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkQgVSREQkIm8F0syuMrNXzWxL8qg1s3My1puZTTSzv5rZNjObbmaDs16js5lNNrM3ksdkMzsmX7+DiIgcOvLZgqwHvgpUAlXAs8DDZjY0Wf9vwJeBLwLvBxqAp82sY8Zr/E/y/LOSRyUwOS/pRUTkkNLqAmlmI82sNLK81MxG7u357v6Iuz/h7q+7+xJ3/ybQCFSbmQHXAv/h7r9z9/nAZ4GOwAXJzxlIKIoT3L3W3WuBK4CxZjagtb+HiIhIa7SlBfkc0CWy/OhkXauZWYmZfQroAPwB6At0B55q3sbdtwEzgVOTRdXA1mT7Zi8Ab2ZsIyIikhO7tQj3wACPLD+WUKT2/gJmJwO1wBGEYjfO3f9kZs0Fbl3WU9YBvZKvuwN/c/edGdzdzawhWdfSz5wATADo2bMn06dPB6Bfv3507NiRefPmhV/i2GMZPHgwM2fOBKC0tJSamhrmzJnDli1bAKiqqiLU9NxqaGhg4cKFAHTv3p2+fftSW1sLQPv27RkxYgSzZ89m27ZtAFRXV7N8+XLWrl0LwKBBg9ixYweLFy8GoFevXvTu3ZvZs2cD0KFDB6qqqqitraWpqQmAmpoalixZQkNDAwBDhgyhqamJpUuXAtCnTx+6detGXV0dAJ06daKyspJZs2axfft2AEaOHMmCBQvYsGEDAMOGDaOxsZFly5YBUF5eTpcuXZgzZw4AnTt3ZtiwYcyYMQN3x8wYNWoU8+bNY9OmTQBUVlayceNGVqxYAez7flq3bh2rVq0C4MQTT6SsrIz58+cD0LVrV/r378+sWbMAKCsro7q6mrq6OrZu3QrAiBEjqK+vZ/Xq1QAMGDCAkpIS7SftJ+2nfdxP0J5cW7NmzX7vpz2xjHoT38Ds0eTLc4BngKaM1SXAEOA1dz9rb7+MmR0OnEBodX4CuBwYDXQitAbf4+5/ydj+bqCXu59pZt8APufu/bJecxkwyd1v2tvPr6qq8uY/0H11+a379fSoSdfm/jVFRApJoX52mtnL7l4VW9eaFuSG5tcBNgHbMta9DcwCJrUmiLu/DbyefPuymb0fuA64IVnWDfhLxlO6AWuTr9cCx5uZNbcik3OXXTO2ERERyYm9Fkh3vwTAzFYAP3D3VnWntlI7oAxYTihyY4A/Jj/vCOA04CvJtrWE/s1q/nEesho4il3PS4qIiOy3Vp+DdPfv7M8PMrP/AB4DVvGP0amjgXOSc4m3At8ws0XAEuBbhPOU/5P8/NfM7EngzuS8IsCdwFR3X7w/2URERLK1ukCaWRdCV+iHCN2au4yAdfdOe3mJ7sC9yb9vAK8CH3H33yfrbyacxb0D6AzMBs5w98aM17gAuB1ofs6jwNWt/R1ERERaqy2jWO8CTgF+AfyV+IjWFrn7xXtZ78DE5NHSNpuAT7fl54qIiOyLthTIDwFj3H32gQojIiJSKNoyUUAD4ZygiIjIQa8tBfKbwHfNLPdXyouIiBSYtnSxfgsoBxrMbCXwTuZKdx8ae5KIiEgxakuBfOCApRARESkwebsOUkREpJjk836QIiIiRaMtEwU0sodrH1sxUYCIiEjRaMs5yOwZaw4jTBwwnn9MNi4iInJQaMs5yF/FlpvZHMIkArfnKpSIiEjacnEO8jngozl4HRERkYKRiwL5KWB9Dl5HRESkYLRlkM6f2HWQjhFuaNwFuDLHuURERFK1PxMFvAv8DZju7otyF0lERCR9mihAREQkoi0tSADM7HRgEKG7dYG7T891KBERkbS15RxkL+AhYDjhhskAPc2sDhjn7n9t8ckiIiJFpi2jWH8M7ADe5+593L0PcGKy7McHIpyIiEha2tLFOgYY7e7Lmxe4+zIz+xIwLefJREREUtTW6yBjc7G2OD+riIhIsWpLgZwG3G5mfZoXmNkJwK2oBSkiIgeZthTILwFHAcvMbKWZrQT+nCz70oEIJyIikpa2XAe5yswqgQ8DJyWLX3P3Zw5IMhERkRTttQVpZh8xsxVm1smDp939dne/Hfhjsm5MHrKKiIjkTWu6WK8G/tPdt2SvcPc3gO8D1+Y4l4iISKpaUyCHAnvqRn0WGJabOCIiIoWhNQXyeMLE5C1x4NjcxBERESkMrSmQ9YRWZEuGAqtzE0dERKQwtKZAPgb8u5m1z15hZkcC3022EREROWi05jKPG4BPAEvM7CdA870fBxIG8Bhw44GJJyIiko69Fkh3bzCzU4GfEQqhNa8Cfg9c5e7rDlxEERGR/GvVRAHuvhI428w6A+8jFMml7r7pQIYTERFJS5tumJwUxD8eoCwiIiIFo6138xARETkkqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhEqECKiIhE5LVAmtlIM3vUzFabmZvZxVnr70mWZz5ezNqmzMxuN7P1ZvZm8nq98/l7iIjIwS/fLcgOwHzgGmBbC9s8A/TIeJydtf5WYDxwPnAa0AmYamYlByCviIgcokrz+cPc/XHgcQitxRY2a3L3tbEVZnY0cBlwibs/nSz7DLAS+DDw+1xnFhGRQ1MhnoOsMbMGM1tiZpPMrGvGuuHAYcBTzQvcfRXwGnBqnnOKiMhBLK8tyFZ4EngQWA6UA98DnjWz4e7eBHQHdgDrs563LlknIiKSEwVVIN19Ssa3fzKzlwndp+cQCmebmdkEYAJAz549mT59OgD9+vWjY8eOzJs3D4Bjjz2WwYMHM3PmTABKS0upqalhzpw5bNmyBYCqqirCadTcamhoYOHChQB0796dvn37UltbC0D79u0ZMWIEs2fPZtu2cNq2urqa5cuXs3Zt6IkeNGgQO3bsYPHixQD06tWL3r17M3v2bAA6dOhAVVUVtbW1NDU1AVBTU8OSJUtoaGgAYMiQITQ1NbF06VIA+vTpQ7du3airqwOgU6dOVFZWMmvWLLZv3w7AyJEjWbBgARs2bABg2LBhNDY2smzZMgDKy8vp0qULc+bMAaBz584MGzaMGTNm4O6YGaNGjWLevHls2rQJgMrKSjZu3MiKFSuAfd9P69atY9WqVQCceOKJlJWVMX/+fAC6du1K//79mTVrFgBlZWVUV1dTV1fH1q1bARgxYgT19fWsXr0agAEDBlBSUqL9pP2k/bSP+wnak2tr1qzZ7/20J+buOQ/dGma2Fbja3e/Zy3bLgZ+7+/fN7HRgGtDV3f+Wsc0C4AF3/397eq2qqipv/gPdV5fful9Pj5p0be5fU0SkkBTqZ6eZvezuVbF1hXgOciczOw7oBaxJFr0MvAOMydimNzAQ+EPeA4qIyEErr12sZtYBeF/ybTvgBDOrADYmj4nA7wgFsRy4CWgAHgJw9zfM7C7gZjNrADYAPwJeJVweIiIikhP5bkFWAa8kj/bAd5Kvv0sYfHMy8AiwBPgVsBiodvfGjNe4llAwfwO8AGwFPuruO/LzK4iIyKEg39dBTgdsD5uc2YrXaAK+mDxEREQOiII+BykiIpIWFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUgREZEIFUiRfXTppZfStWtXhgwZsnPZxIkT6dWrFxUVFVRUVPD444+nmFBE9ocKpMg+uvjii3nyySd3W37dddcxd+5c5s6dy9lnn51CMhHJBRVIkX00cuRIunTpknaMg0asRf6Vr3yFk046iaFDhzJu3Dg2b96cXkDiGe+//34GDx5Mu3btqKurSzHdPxTDe1kMVCBFcuwnP/kJQ4cO5dJLL2XTpk1pxykasRb5mDFjmD9/Pq+++ir9+/fnpptuSildEMs4ZMgQHnzwQUaOHJlSqt0Vw3tZDFQgRXLoyiuv5M9//jNz586lR48efPnLX047UtGItcjPOOMMSktLAfjgBz9IfX19GtF2imUcOHAgAwYMSClRXDG8l8WgNO0AIntTXl5Ox44dKSkpobS0tGC6sWK6deu28+vLL7+csWPHppjm4HL33Xdz3nnnpR3joKD3snVUIKUoPPfccxx33HFpx9irNWvW0KNHDwAeeuihXc4Byb674YYbKC0t5cILL0w7StHTe9l6KpCHqFWrVnHRRRexbt06zIwJEyZwzTXXpB2rqJx//vlMnz6d9evX07t3b77zne8wffp05s6di5lRXl7OnXfemXbMXVx66aVMnTqVrl27Mn/+/LTjtMo999zD1KlTmTZtGmaWdpyipveybVQgD1GlpaX88Ic/pLKyksbGRoYPH86YMWMYNGhQ2tF2Y2acccYZmBlXXHEFEyZMSDsSAPfdd99uyy677LIUkrTexRdfzNVXX81FF12UdpRWefLJJ7n55puZMWMGRx55ZNpxiprey7bTIJ1DVI8ePaisrASgY8eODBw4kNWrV6ecKm7WrFnMmTOHJ554gjvuuIOZM2emHaloFfKlKeeffz7V1dUsXryY3r17c9ddd3H11VfT2NjImDFjqKio4POf/3zBZXzooYfo3bs3tbW1nHPOOZx55pmpZmwpZ6G9l8VALUhhxYoVvPLKK4wYMSLtKFG9evUCoGvXrowbN46XXnop70PqL78196856drcv2YxK4YWeSwjwLhx4/KcZM+K4b0sBmpBHuK2bt3K+PHjufXWW+nUqVPacXbz5ptv0tjYuPPrp556SgNfRCQv1II8hL3zzjuMHz+eCy+8kHPPPTftOFHr1q3beXS+fft2LrjgAs4666yUU8n+KJbWuHJK0RZIM/sC8BWgB7AAuNbdn083VfFwdy677DIGDhzI9ddfn3acFvXr14958+alHUNEDkFF2cVqZucBtwE3AqcAfwCeMLMTUg1WRF544QUmT57Ms88+qztPHEJigzdEJK5YW5DXA/e4+6Tk+y+a2VnAlcDX04tVPGpqanD3tGOoeyjPWhpkIiK7K7oWpJkdDgwHnspa9RRwav4TiYjIwagYW5DHASXAuqzl64AP5z9OYVLL7NCU6/2ufS6HMiuEbra2MLOewGpglLvPzFj+beBCdx+Qtf0EoHnqlQHA4nxlJRTz9Xn8efuqGHIWQ0ZQzlxTztwphoyQ/5zvcffjYyuKsQW5HtgBdMta3g1Ym72xu/8C+EUecu3GzOrcvSqNn90WxZCzGDKCcuaacuZOMWSEwspZdOcg3f1t4GVgTNaqMYTRrCIiIvutGFuQAD8CJpvZS8ALwOeBnsDPU00lIiIHjaIskO7+GzM7FvgWYaKA+cDZ7r4y3WS7SaVrdx8UQ85iyAjKmWvKmTvFkBEKKGfRDdIRERHJh6I7BykiIpIPKpAiIiIRKpAiIiIRKpAHkJlZxtd6r0VEiog+tA8gd/dk7ljc/d3m5ZmFM23FUrjNrCTtDK1hZiWFtH9FZN9pFOsBYmbdgU8AlYQp7l4EHnD32lSDtSD5ULfMQp65zgvkD6W5oBdJTnP3HWlniTGzjsBRQANwJPD32HuaNjMrKdT3MFMR5ewBdAS2Eea0Xuvub6WbaldmVuru29POASqQB4yZPQa8D3gN+CvhTiNDgNeB/wAmp/0fysyuItxsera7b8tY3o7QAC6IPw4zuwGYAzzl7o0Zy0uAdwso538RDoR+6+6bMpaXEnIWRAEyswuASwgHbwC1wBPAM+6+ONmmYA42YOe+9kJ5D1tSyDmTm8xfSvgceocwI9mLwLPADHdvKqT93txrlOrnpLvrkeMHcDrwN6B38v0RwNGEIjkJWAZcn3LGGuBdYCZwL/AlYFjWNmXA/wV6FEDOV4DngR8QJqrP3KY98GPghALIuQT4C3A/8LFIzruBQSnmHAmsAH4NfAT4LKE4NgGrgKvSypaVswqYSuiFOSxrXSnJwX3ajyLKOZpwk4fvAwOTfT8p+XtdDdwAlKac8Z+AecDngMMj72U7wIAu+Xpf1YI8AMxsIjDS3U+PrOsEfJFwY+eR7j4nz/Gac9wCjACeIbQkugFbCf9hXiAUzm6E1kUnd9+aUs6bgfcDvyEc+Q4BjiHc3mw68L+ELsIXgaM9o4WZ55zfS3L+FDiR8IE0BHgbeBqYTJhkf3bKOX8LbHb3CVnLjwT+jfC3eau7/3sa+TLy/Ao4n1DMS4DnCL0uMzK2OZVwYHehp9TKKKKc/wM0uvsVWcsPAy4Dvgv8r7tflka+JMuvgE8Tuv2PJ3w2/cTdp2Zs80+Eg/axnodu2KKcaq4IPANcZWZnufuTmSvcfYuZfR8YlTxSKZCEW8rUufu3k4FEpxMmfD+FUDA/CZwETEurOCaOA5a5+8+Trt9KoJpQjP4FGAf0BZ5Mq+gkjgLWAI+5+3Yz+x2hQFYTWpdTgF7AEynnPJxQqAEwszJC9+/fgYnJe/wpM5vs7itSygjQn9CqqQM+QGj53mtmm4BHCQccFwJD0io6iWLJ+TbQxcyOcPe3zOwIYLu7vwP83MzeAb5iZoPdfUFKGcsJ04dOJbyX/wrcn2S7n9BL9CmgZz6KI6Au1gPxIHSl/ZpwvvFrwHDgqIz1xwD1wLkpZhwCfCSyvCvhiPgeQpfh2Sm/l92B0ZHlRwP/TDjyLYScHYAPtvC3MIjQbVQIOS8ENgCnZi0vSf7tAiwHqlPMWE74kLwy+f4IwkC3TwK3AX8kdAe/C/yLcrYq65mEWwV+Mmt5afLvUYRTA6NSytcT+CVwRfJ9CdCZcCD8teS9bErey4/mK5e6WA8QM+tD6Eb9MLCJsIPXEo7eq4EBnnVz53xrHi2WtBrakTGQxMw+Ctzr7kenmTFb9gCiJOd97t4h3WS7yh7sYGb/Qhi8c0SamQgfhJOAswjnHn9H6CXYnLy35wG/cPeOaeUEMLNuhIPKZVnLOwL9gC8A57n7MSnEy8xT8DmT/V4G3EjoQq8DfgXc7+4bzOw4Qm/Mre7eKcWcxwJHuvuqrOWlhGL5ReBL+XwvVSAPMDMbSuhXP5XQpd2ZcN/KH7n7n9LMFtN8uQfwAOHc44dTjtSi5AP9p0AXd/9k2nlakryn3wG6edY5oJTydAQuBs4hnGd+F3iDcNTeDZji7hPTyhcTOeB4GGhy9/PSS7WrZNSleUb3X6HlNLOxwAWEUynHE87lbycU0F+6+w9SjLdHyXu5w93H5+1nqkDmTnI+ZyhwLtAIvEo4z7c2WT+AcDL/bU/pjc/IOI7wobiA0BW8yt3fNLN27v5uctR2tLtvSCNns70Nm0/Wd3T3zXkNtnuOPV7KkRTzozzd84+7SP4eqwnncHsTugh/Arzs4cbkBcnMjgEeBL7q7n9MOQ5m1jF7vyb7uxMFkjPzACO5FnIQcAJh3x9BGF291Av0Wk4z6wDcDtzm7nPz9nNVIHPHzH5MKI5rCOdyygndqo8A3/cCuF9lJON7CNdpPkzoYlnW8rPzx8yGu/vLWcsK6rpHADOrcfdZWct2KZbNBx2pBGS3D8dSgKxWTqr5MnJk59zTAceRHgYWpcLMBgLXE1pirxPO380Fns/sIjSz9p5xjXGaCukax31hZmXu3pTPn1kU04wVAzMbROi2uhQ4y93fSxhgcjvhmqNFZnZF0t1WSBl7ELopPwosMLMJlkgx54nAH81svpn9yMxOgXDBsLt7Eu8wM/tAMgI3rZwnATPNrNHMpiRD0HH37Ukr3JJ85yTnqtJynJmNysi23czamVlZch66OWva0/ll52zOVZr592hh1pq/p/U3ambvJRxQDiBcwlMGnAb8H+CHZnZG87buvi3FnN3M7DNm1iXJ0nzw0a45k4WpEcvSyBfLuIftjvBkIoN8ZQM0ijVXD+AbwMyM70uz1t8ILCIMUVbGPef8NrAUuIVwvnY14TrHfwP6JNv0Ipw7653y+/kKYTDW84RzOWsJkxm8N9mma5KzT4o570gyrE2+HpS1voTQ3favJKNZCzRnu4ycqV3UDvyMcP1tx4xl3QgHnzOBN4HL0sqXken25P3cSLhM4mygLGubEwiFvUwZd3+oBZk7rwE9zOx9EI6AkyPf5lGLk4C/E2bcSEsxZIRwZP44YdaPywmFaD5hsFOtmf0vcCfwmrvXp5YyFOkXkiwfI1xLejdh8MtSM3uVcP3ja541Mi/P3g/8nPDBXgPMN7PXzewbZtbFw3mnzxJOA6R5DmpvOd/NyJnmXJ3vAea4e2PSAitx93Xufo+7j0x+h8stTL6QpirC/6EvEwYHPgQsN7Pbzax5msHLgc97nrsuiyZj2kc5B8sDOJZQgBYRroPa7WiHMI3SFcq4x4ylhFF2X89a3oUwoORq4LeEo87UjtIJra6zgS9kLT+ccMQ7lnDA8S5wSYo53wP8ntC6aUco6mcSWmh/SfK9QDiCv045W5X1miTTSVn7/fDk60GEa0n/OcWMPQktsgnJ96WEiT++SjhXugP4E6G1e40yxh8apJNDZtaT0C14MmEigJcIEwHXA1cRPvjL3f1NZWwdMzvMw2wfmcvOJVyG0sFTHKiRKTbQxczOJFxrmFpOC1MbjgNW+K7Tn7UnfEANJ1yrV0PoMkxlQEmx5Ewy9SWMTj0G+Hd3vztr/RDCDFnHpLjfjyL0aDS4++ysdUcSJgr5P4QBe6m8n0WRUQUytyxc7DqWMG1bP0J3YWdgBnCnu09JMR5Q2BlbGlGZjGpsHqTzA6DK3UfnPeA/8rR4e7CMbSYSZqQ5M2/B9iDJXOJZ3ZNm9t9ArzTfz0zFkNPCtaQ3EWYmOgx4ijDF5BBCEZ/r7hell3BXsRGsZnYP4Vz5aemk2lUhZlSBzAEz6024tRWE7oCFhPut9SNMQfZ3YL27b0wnYXFkhF1yGqFbbbEn15Em641wvm+1F8A1cHtiZqOBv3l6c1tGNRcgQhdWe8LAkpvc/XepBstSiDmTTO3cfUdy7v5kwvyrpxPmCV5OuDvOg5l/tynk3OMt65KW+SPAz9z9obyG+0eGws+oArl/zOxKwmUTwwhFZhmhu/I5wg2S0xycARRHRtgt55uE68vqCSNYH/bkXoVpswK6tm1Pkg+gjxFmTDmSMBp4hrs3ZGxTBnzY3R9LJ2Xx5GyJZVyfa2ZHu/sbaWfaGwt38ajyAr2BOxRGRhXI/ZB0Vb4O/JAw8u54wtyrowkn6v9KmDtwYaz7QBlbnXMgoVBel+RM7e7tZtaZMJDpMUJL4Q/N71nm+2fhQvI1ntIMP0kX4F3APxNa4vWAA28RutInu/uiNLJlKqKchxFmnVnpkdGUaf7fycqxx5yFoBgy7pTGyKCD5UGYPHd2C+tqCNfGLQOOU8aDKmcTYXDTDuDPhDuKDMjYpg/h+sh+Keb8JqGQvz/5/iTCZTI/I0yc/yhwfJrvZZHlvJbQq/FfhEk1upN1zShharmPkHXj5ALNeQ5ZNyVWxkjWNH94sT+AKwjn8oYk35dl7lDCcP+FwAXKeNDknES4zq0rYU7bmwiTGuwgdAVPIEwcsDXlnM8D10eWlxDOmS0l3EMztYxFlrOWcEri+WRfLwd+RDh4OzrZ5vPAi8pZ/BmbH5ooYP88QOgWutbChMVN7v52ck4Fd/8LsJkwEbQy7lnB50zOgy0kTOze4O6vuvvXCRc7n5msm0i4ge73U8xZSphYYbyZHZ8sK0lGCO9w95mED6DeZjZMOfea83jgHWCSh9GU7yF0C48lDBx61sy+SmgZzW7pdZSzODLuIu0KXawPwihLAz4OrCTcveMuwvVazVNifTpZXq6MxZ8zyVoGdE++LiGMaMxcP5qUp8BLcnyQ0P37fcJttrLX9wG2Ei6bUM49Z+wBXAecGVl3CmEygw3JflfOIs+Y+dAgnf1k4dY7JxDu9zgO+Kdk1VrCh/5kT/neesWQEQo/Z/NADDPrB7zp7usi674NXOzu/VLM2XwD7EsI8+uWEm6M/BvCDDBDCUfsg9z9/cq5d8klB+7ubyWXegC7TAB+A3C2u5+SVsYkR8HnLIaMzVQg94GZdQU+Q5g/cD3hesLNwCzCeajDCNfyPenuS5SxZUWY83qggTAx+RrCVFkPeriXphHmjfyru09NK2um5KDjYsIMSRWEVvhbhAEwN3nWDCZpKYacLY1UTWZ9mQP8l7un1rWekafgcxZDRlCB3CfJ7A6DCTP6byTME3oy0J/w4fmttP9DF0NGKPqcpxBGXdYD/+nuT6UWMGFhyrbGzA+fpKV2BGFCiCGE1m/af59FmzOyzRHAecB9ntKNposhZzFk3C2PCmTbJK2ERkIXwMyMZScAI4DPEWan+aS7z1HGgzpnb8I5tMsJgw3OTzNnkutOwiUoLxGuM9sS2aazu29K+brXgynnMZ7S9a4ZGQo+ZzFk3E3aJ0GL7UFoRfwJ+GAL68uAOkK3kDIeGjkPL5Cc5xMGN2wmXDN6J2Gi5/cB7ZNtOhBu9nuycu5TznHAezNyNk+HNkQ5iztj7KEWZBslJ5inEqbEugj4s+9+F4cvEm7FVJH/hMWRMcmgnDlkZpMI15XdTCg4nyV8AC0m3F9zGmFi+tvc/XDlVE5l3DNdB9lGHubg/CbhaOfXwEVm1sfMOsDOk8yjCNd3KeMeKGfuJNcULgc2u/syd/+Bu59MuAnxDMIH0m8Jd3CfrJzKqYytkHYTtlgfhEEEvyGMulxPGLxxN2F4+mxS7BoqpozKmdN8nUlu4kvo9rWs9ecRurkqlFM5lXHvD3Wx7qdk+P85hIvc3yK0Iu73AphguVkxZATlPBCSkaHm4fZMlxO6sI5MO1c25cytYshZFBlVIHPHWrjZbyEphoygnAeCmV1PmBT6P9POsifKmVvFkLNQM6pAihwiLNxmaEehF3TlzK1iyFmoGVUgRUREIjSKVUREJEIFUkREJEIFUkREJEIFUkREJEIFUkREJEIFUkREJOL/AzEml04tXgEsAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 504x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Run the noisy simulation\n",
|
|
"sim_thermal = AerSimulator(noise_model=noise_thermal)\n",
|
|
"\n",
|
|
"# Transpile circuit for noisy basis gates\n",
|
|
"circ_tthermal = transpile(circ, sim_thermal)\n",
|
|
"\n",
|
|
"# Run and get counts\n",
|
|
"result_thermal = sim_thermal.run(circ_tthermal).result()\n",
|
|
"counts_thermal = result_thermal.get_counts(0)\n",
|
|
"\n",
|
|
"# Plot noisy output\n",
|
|
"plot_histogram(counts_thermal)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T17:01:16.716582Z",
|
|
"start_time": "2019-08-19T17:01:16.709462Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<h3>Version Information</h3><table><tr><th>Qiskit Software</th><th>Version</th></tr><tr><td><code>qiskit</code></td><td>0.24.0.dev0+dba2eff</td></tr><tr><td><code>qiskit-aer</code></td><td>0.11.2</td></tr><tr><td><code>qiskit-ibmq-provider</code></td><td>0.19.2</td></tr><tr><td><code>qiskit</code></td><td>0.40.0</td></tr><tr><th>System information</th></tr><tr><td>Python version</td><td>3.8.11</td></tr><tr><td>Python compiler</td><td>Clang 12.0.5 (clang-1205.0.22.11)</td></tr><tr><td>Python build</td><td>default, Jul 27 2021 10:46:38</td></tr><tr><td>OS</td><td>Darwin</td></tr><tr><td>CPUs</td><td>8</td></tr><tr><td>Memory (Gb)</td><td>64.0</td></tr><tr><td colspan='2'>Tue Feb 07 10:30:00 2023 JST</td></tr></table>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div style='width: 100%; background-color:#d5d9e0;padding-left: 10px; padding-bottom: 10px; padding-right: 10px; padding-top: 5px'><h3>This code is a part of Qiskit</h3><p>© Copyright IBM 2017, 2023.</p><p>This code is licensed under the Apache License, Version 2.0. You may<br>obtain a copy of this license in the LICENSE.txt file in the root directory<br> of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.<p>Any modifications or derivative works of this code must retain this<br>copyright notice, and modified files need to carry a notice indicating<br>that they have been altered from the originals.</p></div>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import qiskit\n",
|
|
"qiskit.__version__\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.11"
|
|
},
|
|
"varInspector": {
|
|
"cols": {
|
|
"lenName": 16,
|
|
"lenType": 16,
|
|
"lenVar": 40
|
|
},
|
|
"kernels_config": {
|
|
"python": {
|
|
"delete_cmd_postfix": "",
|
|
"delete_cmd_prefix": "del ",
|
|
"library": "var_list.py",
|
|
"varRefreshCmd": "print(var_dic_list())"
|
|
},
|
|
"r": {
|
|
"delete_cmd_postfix": ") ",
|
|
"delete_cmd_prefix": "rm(",
|
|
"library": "var_list.r",
|
|
"varRefreshCmd": "cat(var_dic_list()) "
|
|
}
|
|
},
|
|
"types_to_exclude": [
|
|
"module",
|
|
"function",
|
|
"builtin_function_or_method",
|
|
"instance",
|
|
"_Feature"
|
|
],
|
|
"window_display": false
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "f8729fd834348017bca17aea688b306f536a675180840f7307eb909fff39c285"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|