mirror of https://github.com/Qiskit/qiskit-aer.git
304 lines
45 KiB
Plaintext
Executable File
304 lines
45 KiB
Plaintext
Executable File
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Device backend noise model simulations\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"\n",
|
|
"This notebook shows how to use the Qiskit Aer `noise` module to automatically generate a basic noise model for an IBMQ hardware device, and use this model to do noisy simulations of `QuantumCircuits` to study the effects of errors which occur on real devices.\n",
|
|
"\n",
|
|
"Note, that these automatic models are only an *approximation* of the real errors that occur on actual devices, due to the fact that they must be build from a limited set of input parameters related to *average error rates* on gates. The study of quantum errors on real devices is an active area of research and we discuss the Qiskit Aer tools for configuring more detailed noise models in another notebook."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T16:57:28.062507Z",
|
|
"start_time": "2019-08-19T16:57:24.202560Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from qiskit import QuantumCircuit, transpile\n",
|
|
"from qiskit_aer import AerSimulator\n",
|
|
"from qiskit.visualization import plot_histogram"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Device Backend Noise Model\n",
|
|
"\n",
|
|
"The *Qiskit Aer* device noise model automatically generates a simplified noise model for a real device. This model is generated using the calibration information reported in the properties of a device and takes into account\n",
|
|
"\n",
|
|
"* The *gate_error* probability of each basis gate on each qubit.\n",
|
|
"* The *gate_length* of each basis gate on each qubit.\n",
|
|
"* The $T_1$, $T_2$ relaxation time constants of each qubit.\n",
|
|
"* The readout error probability of each qubit.\n",
|
|
"\n",
|
|
"### Fake Provider Backends\n",
|
|
"\n",
|
|
"We will use real noise data for an IBM Quantum device using the data stored in Qiskit Terra. Specifically, in this tutorial, the device is `ibmq_vigo`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T16:57:32.162207Z",
|
|
"start_time": "2019-08-19T16:57:32.159466Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from qiskit_ibm_runtime.fake_provider import FakeVigo\n",
|
|
"device_backend = FakeVigo()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Test circuit for device and simulation comparison\n",
|
|
"\n",
|
|
"Now we construct a test circuit to compare the output of the real device with the noisy output simulated on the Qiskit Aer `AerSimulator`. We will prepare a 3-qubit GHZ state $\\frac{1}{\\sqrt2}(|0,0,0\\rangle + |1,1,1\\rangle)$ on qubits 0, 1 and 2. Before running with noise or on the device we show the ideal expected output with no noise."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T16:57:32.330124Z",
|
|
"start_time": "2019-08-19T16:57:32.175615Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFTCAYAAABbKVcuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAArMElEQVR4nO3de7xVdZ3/8dcbjh4xILkIyEUBuYxAongMUQQzycZGposjmqaOqZnlJTO1UtOmnPxZJuqYRU2gNmrqZHRRMQ0Z9IQdKBIwxAAF5CIXBQQOcvj8/ljr4GZzLmvD5tx4Px+P82Cf7/qutT+Lvff57O/6XpYiAjMzM6tfq8YOwMzMrLlw0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTmhRJvSWFpJIiHGuxpFOKEVdjk9RG0m8kvSPp0caOp1Dpa9qvlm3nSJrS0DGZ7Q4nTWtwLSmZFULSREnf2c3dzwC6Ap0i4t+KEMsgSRWS1qU/f5A0aE+Puzsi4hcR8bGc2GpNsDl1DpE0QdKbkjZKWpj+//5Tur3GL1+5r4Gk+9J9c382pfuNKuQcJE2VdFEB9W+W9GAhz2FNg5OmWfNwGPBqRGwrdMdaWu1vkiTijkBnYDLw8B5F2EAkdQJeBA4ETgTaAcOA54ExWY8TEZdGRNvcH+B/gT8CLxQ/cmsJnDStUUlqLen7klZLWgh8Im/7ByX9TNJyScskfUdS63Tb4ZKek7Qm3f8Xkg7K+LxtJP1A0uvpJc/pktqk28ZKmivp7bQFcUTOfju1gvJaLidJWirpq5JWpTH/e7rtEuAc4Nq0RfObtPy69Lw2SJov6aM1xHoLcBMwLt3385JaSbohjX+VpPslfTCtX93K+rykN4Dn8o8ZEW9HxOJIlgQTUAXU17r7WnpOb0q6MPf/Ir+lJekCSdPzDnFa2iJcLel2Sa3y60qaltadnZ7ruBpC+QqwHvhcRPwjEm9HxM8j4u66zqGe8/si8BHg7IioqmH7AZIeTN9vb0v6s6Sukr5LkrzvSWO+J60/XtISSeslzZR0Ylr+ceAbvP96zk7La32vW9Oxx/1GZnvoYuBfgKOBd4HH87ZPBFaR/EH/APBbYAnwY5I/9v8JTAPap/veDFyV4Xm/DwwGjgdWAMOB7ZIGAA8BnwSmkvyB/o2kQRGxNcNxuwEfBHqQtHoek/RERPxE0vHA0oi4AUDSQODLwLER8aak3sAufyQj4luSAugXEeem+14IXEDyR34VcD9wD/C5nF1HA0cA22sLVtLbQFuSL9A31VHv48A1wEeBRcCE+v4javApoCx9vj8A84Gf5laIiFHpuQ6NiNdqOc4pwK8iotbzKpSkY4HbgY9HxMpaqp1P8tr2AiqBo4DNEfFNSScAD0ZE7vn8Gfg28A5wJfCopN4R8ZSkW8l5PVMTqf29bk2EW5rW2M4E7oyIJRGxliQJAiCpK3AacFVEvBsRq4AfAmcBRMRrEfFMRFRGxFvAHSSJok5pC+dC4MqIWBYRVRHxYkRUAuOA36XHfY8kubYhSa5ZvAd8OyLei4jfAxuBgbXUrQJKgUGS9ktbfv/I+DznAHdExMKI2Ah8HTgr71Lszen/2+baDhIRB5Ekgi8Df6nj+c4Efh4RcyLiXZIvJ4W6LSLWRsQbwJ3A2btxDEguJ6+o/iW9MvB22lrPH1C0Ot32dvoF4bP5B5PUEXgUuCki8lvHud4DOpEku6qImBkR62urHBEPRsSaiNgWET8gea1rfC/U9163psMtTWts3Um+TVd7PefxYcB+wHJJ1WWtquunf2jG836/VitgXYbn7AwcANSUoLrnxhAR2yUtIWk5ZrEmr99xE0nLahcR8Zqkq0gS0GBJTwNXR8SbGZ5npzjTxyUkg4WqLSGDiHhX0n3AW+ml6AOAeTnb26bPNzPv+QqV/zp3341jAKwBDqn+JSImAwell4fPzavbOff1kDQxd6OSN9aDQEVE3FHP8z5A0sp8WEk3wIPAN9MvV7uQdA3weZLzDJKrIZ1rOXad73VrOtzStMa2nOQPUbVDcx4vIbkM1jkiDkp/2kfE4HT7rSR/jD4UEe1J/mCK+q0GtgCH17DtTZI/YMCOP6q9gGVp0SaSASjVumV4vmq73FIoIv4nIkamzxnAbRmPtVOcJP9v24DcS4uF3MKoFcl59YiIN/IGx0DdrxMkl9br+3/J3z/Ll4OaPAt8srpPdA/dQHI59ML6KqZXD26JiEEkVx7+BTivenNu3bT/8lqSFnqHtEX/Du+/P/Nfm/re69ZEOGlaY/slcIWknpI6ANdXb4iI5cAU4AeS2qeDXw6XVH0Jth3J5c93JPUAvpblCdO+sP8G7pDUXclgpBGSStN4PiHpo5L2A75K8sfsxXT3vwKfTff5OBkuB+dYCfSt/kXSQEknp8+7BdhMHf2PeR4CviKpj6S2JF8gHsk6ulbSGElHp+fRnuTS9jrglVp2+SVwgZKpKgcC38rb/lfg05IOTAcHfb6GY3xNUgdJvUj6+B6p5bl2+n+qwR1AB+CB9P0gSe1I+hgzUzLt6VrgM3VdZs2p/xFJH0oH56wnuVxb/Xrlx9yO5EvMW0CJpJtIWprk1O9dnfgzvNetiXDStMY2AXgamA3MIhnyn+s8YH+Sy4XrgMd4/9LcLSRTDd4BflfDvnW5BniZZLDGWpIWXquImE/SYr2bpEV6OnB6ziCgK9Oyt0n6FZ8o4Dl/RtJ/+bakJ0j6uL6XPs8KoAtJ32QW/01yuXAaycCcLcDlBcRyEEnifYfkMvXhJINgttRUOSKeJOmHfA54jV1H5P4Q2EqSDCYBv6jhML8mucT7V5LX62e1xHYzMCn9fzqzhlhWA8eRnPN0YEN6zHbAF2s5Zk2+QdJfXa5d52ueU0P9biTvv/UkXy6eJ3kNIOkmOEPJnNe7SN7TTwGvklyK3sLOl1qrF6hYI2lW+riu97o1EfJNqM1sd6SjXPvXMcrVrMVxS9PMzCwjJ00zM7OMfHnWzMwsI7c0zczMMnLSNDMzy6jBVwSSdBnJfLpDgLkky0b9Xx319yeZgPw5kpU1VgLfj4i7cup8BvgPkmHz/yBZpeNX9cXSuXPn6N279+6fjJmZtTgzZ85cHREH17StQZOmkjsWjAcuI5lfdRnwZLoY9hu17PYw0BO4BFhAskxYm5xjjiCZJP0tknl6nyZZGPmEiJhRVzy9e/emoqJiz07KzMxaFEm1LhPZoAOBJM0A/hYRF+eULQAei4hdJnVL+hjJJODD0wnNNR3zEaBjRIzJKfsD8FZE1LkgdFlZWThpmplZLkkzI6Kspm0N1qeZXmY9hmSpqFxTqP0OEp8kWbHlaiX3KVwg6a502bBqI2o45tN1HNPMzGy3NOTl2c4k9wrMv1fdSpL749WkLzCSZO3Pz5As/XU3Sd/mGWmdbrUcs5CFtM3MzOrV1G8N1orkbgCfjYh3ACR9GXhaUtc6bhZbK0mXkPSP0r17d6ZOnQpA3759adeuHbNnzwagU6dODB48mGnTkhvJl5SUMHLkSGbNmsX69cnazmVlZaxcuZIlS5IlJfv3709paSlz5swBoEuXLgwYMIDp05Nb9JWWljJixAgqKirYuHEjAMOHD2fp0qUsW5bcRGPgwIG0bt2aefOSOzN169aNPn36UF5eDkCbNm0YPnw4M2bMYPPm5DaJI0aMYNGiRaxYkdxicNCgQVRVVTF//nwAevToQc+ePZkxI+nibdu2LWVlZZSXl1NZWQnAyJEjefXVV1m1ahUAQ4YMobKykgULFgDQq1cvunbtuqMPuH379gwbNozp06ezbVuyRvioUaOYO3cua9asAWDo0KFs2LCBhQsXAkkfcseOHZk1K1lqs0OHDgwdOpTnn3+eiEASo0ePZvbs2axbl9zha9iwYaxdu5bFixf7dfLr5NfJr1ODvE51abA+zfTy7Cbg7Ih4NKf8v4AhEbHLav6SJgEnRES/nLJewBvAhyPiz5LeAO6OiNtz6nwN+HJEHJZ/zFzu0zQzs3xNok8zvUvETGBM3qYxvH/bpXwvAN3z+jAHpP9Wj24qL/CYZmZmu6WhFze4g+SefBdJOkLSeJL+yfsAJN0v6f6c+v9Dcpf2n0saLOkEkikrj0XEqrTOeOBkSddL+idJXwc+QnIbIzMzs6Jp0D7NiHhEUieSxQoOAeYAp0VEdavx0Lz6G9Mbxd5NMop2Hcn9C3NvVPyipLOA7wDfJlncYFx9czTNzMwKtU8v2O4+TTMzy9ck+jTNzMyaOydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNM7Nm4qmnnmLgwIH069eP733ve7tsnzhxIgcffDBHHXUURx11FD/96U93bJs0aRL9+/enf//+TJo0aUf5I488wpFHHsngwYO57rrrGuQ8mrMGvZ+mmZntnqqqKr70pS/xzDPP0LNnT4499ljGjh3LoEGDdqo3btw47rnnnp3K1q5dyy233EJFRQWSOOaYYxg7dizbt2/na1/7GjNnzuTggw/m/PPP59lnn+WjH/1oQ55as+KWpplZM/DSSy/Rr18/+vbty/77789ZZ53Fr3/960z7Pv3004wZM4aOHTvSoUMHxowZw1NPPcXChQvp378/Bx98MACnnHIKjz/++N48jWbPSdPMrBlYtmwZvXr12vF7z549WbZs2S71Hn/8cY488kjOOOMMlixZUue+/fr1Y/78+SxevJht27bxxBNP7NjHauakaWbWQpx++uksXryYv/3tb4wZM4bzzz+/zvodOnTgRz/6EePGjePEE0+kd+/etG7duoGibZ6cNM3MmoEePXrs1ApcunQpPXr02KlOp06dKC0tBeCiiy5i5syZ9e57+umnM2PGDMrLyxk4cCADBgzY26fSrDlpmpk1A8ceeywLFixg0aJFbN26lYcffpixY8fuVGf58uU7Hk+ePJkjjjgCgFNPPZUpU6awbt061q1bx5QpUzj11FMBWLVqFQDr1q3j3nvv5aKLLmqgM2qePHrWzKwZKCkp4Z577uHUU0+lqqqKCy+8kMGDB3PTTTdRVlbG2LFjueuuu5g8eTIlJSV07NiRiRMnAtCxY0duvPFGjj32WABuuukmOnbsCMCVV17J7Nmzd5S7pVk3RURjx9BoysrKoqKiorHDaFRPPfUUV155JVVVVVx00UVcf/31NdZ7/PHHOeOMM/jzn/9MWVkZW7du5Qtf+AIVFRW0atWK8ePHc9JJJwHwzW9+k/vvv59169axcePGBjwbM7M9J2lmRJTVtM2XZ/dh1fO+nnzySebNm8dDDz3EvHnzdqm3YcMGxo8fz/Dhw3eUTZgwAYCXX36ZZ555hq9+9ats374dSPpIXnrppYY5CTOzBuSkuQ/LOu/rxhtv5LrrruOAAw7YUTZv3jxOPvlkALp06cJBBx1Edav9uOOO45BDDmmYkzAza0BOmvuwLPO+Zs2axZIlS/jEJz6xU/nQoUOZPHky27ZtY9GiRcycOdPzu8ysxfNAIKvV9u3bufrqq3cMJsh14YUX8sorr1BWVsZhhx3G8ccf7/ldZtbiOWnuw+qb97VhwwbmzJmzY4DPihUrGDt2LJMnT6asrIwf/vCHO+oef/zxHnVnZi2eL8/uw+qb9/XBD36Q1atXs3jxYhYvXsxxxx23I2Fu2rSJd999F4BnnnmGkpKSXRaONjNraZw092G5876OOOIIzjzzzB3zviZPnlznvqtWrWLYsGEcccQR3HbbbTzwwAM7tl177bX07NmTTZs20bNnT26++ea9fCZmZg3D8zT38XmaZma2M8/TNDMzKwInTTMzs4ycNM3MzDJy0jQzM8vI8zTNbJ9z8Z2NHYHtDROu2vvP4ZammZlZRk6aZmZmGTlpmpmZZeSkaWZmlpGTppmZWUZOmmZmZhk5aZqZmWXkeZpF4DlfLVNDzPkys+bFLU0zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMGjxpSrpM0iJJWyTNlHRixv1GStomaU5e+QWSooafA/bOGZiZ2b6qQZOmpHHAeOBW4GjgReBJSYfWs18H4H7g2VqqbAIOyf2JiC3FitvMzAwavqV5NTAxIiZExCsRcTmwHPhiPfv9DJgElNeyPSJiRe5PEWM2MzMDGjBpStofOAaYkrdpCnB8HftdBnQFvlPH4dtIel3SUkm/lXT0HgdsZmaWpyFbmp2B1sDKvPKVQLeadpD0IeBbwLkRUVXLcecDFwL/CpwNbAFekNS/GEGbmZlVK2nsAGojqRR4BLgmIhbVVi8iysm5bCvpReCvwOXAFTUc9xLgEoDu3bszdepUAPr27Uu7du2YPXs2AJ06dWLw4MFMmzYNgJKSEkaOHMmsWbNYv349AGVlZaxcuRI4fE9P15qgiooKNm7cCMDw4cNZunQpy5YtA2DgwIG0bt2aefPmAdCtWzf69OlDeXnyVmzTpg3Dhw9nxowZbN68GYARI0awaNEiVqxIeg8GDRpEVVUV8+fPB6BHjx707NmTGTNmANC2bVvKysooLy+nsrISgJEjR/Lqq6+yatUqAIYMGUJlZSULFiwAoFevXnTt2pWKigoA2rdvz7Bhw5g+fTrbtm0DYNSoUcydO5c1a9YAMHToUDZs2MDChQsB6N27Nx07dmTWrFkAdOjQgaFDh/L8888TEUhi9OjRzJ49m3Xr1gEwbNgw1q5dy+LFi4E9+zwtWbIEgP79+1NaWsqcOcnYvy5dujBgwACmT58OQGlpKSNGjNit1wlKC3w3WHOwfPnyonye6qKI2IunkPNEyeXZTcDZEfFoTvl/AUMiYnRe/d7AIiC3hdkKUFp2WkTkX+qt3vfnQLeI+Oe6YiorK4vqPy574uI79/gQ1gRNuKqxI7C9xZ/ZlqlYn1lJMyOirKZtDXZ5NiK2AjOBMXmbxpCMos23DPgQcFTOz33Aa+njmvZBkoAjSQYYmZmZFU1DX569A3hA0kvAC8ClQHeSZIik+wEi4ryIeA/In5O5CqiMiDk5Zd8C/gQsANqTXJI9kvpH5JqZmRWkQZNmRDwiqRNwA8l8yjkkl1lfT6vUOV+zFgcBPyEZTPQO8BdgVES8tOcRm5mZva/BBwJFxL3AvbVsO6mefW8Gbs4r+wrwleJEZ2ZmVjuvPWtmZpaRk6aZmVlGTppmZmYZOWmamZll5KRpZmaWkZOmmZlZRk6aZmZmGTlpmpmZZeSkaWZmlpGTppmZWUZOmmZmZhk5aZqZmWXkpGlmZpaRk6aZmVlGTppmZmYZOWmamZll5KRpZmaWkZOmmZlZRgUlTUmtJLXK+b2bpIsknVD80MzMzJqWQluavwMuB5DUFqgAbgemSjqvyLGZmZk1KYUmzTLgufTxp4H1QBfgYuCaIsZlZmbW5BSaNNsCb6ePPwb8KiLeI0mkhxcxLjMzsyan0KT5BnCCpA8ApwLPpOUdgU3FDMzMzKypKSmw/h3AA8BG4HVgWlo+Cni5iHGZmZk1OQUlzYj4saSZQC/gmYjYnm76B3BjsYMzMzNrSgptaRIRFSSjZnPLfle0iMzMzJqoghc3kHSZpLmSNknqm5ZdJ+nM4odnZmbWdBS6uMFVwA3ATwDlbHoT+HLxwjIzM2t6Cm1pXgpcHBHjgW055bOAwUWLyszMrAkqNGkeBsypofw9oM2eh2NmZtZ0FZo0FwLDaig/DZi35+GYmZk1XYWOnv0+cI+kA0n6NEdI+hxwLXBhsYMzMzNrSgqdp/lzSSXArcCBJAsdvAlcERGP7IX4zMzMmozdmac5AZggqTPQKiJWFT8sMzOzpqfgpFktIlYXMxAzM7Omrt6kKelvwOiIWCfpZSBqqxsRRxYzODMzs6YkS0vzcaAy53GtSdPMzKwlqzdpRsQtOY9v3qvRmJmZNWGFLqP3nKSDaihvL+m5okVlZmbWBBW6uMFJwP41lB8AnLjH0ZiZmTVhmUbPSspdBehISWtzfm8NnAosK2ZgZmZmTU3WKScVJAOAAphSw/bNwOXFCsrMzKwpypo0+5Asm7cQ+DDwVs62rcCqiKgqcmxmZmZNSqakGRGvpw8Lvmm1mZlZS5FlcYNPA7+JiPfSx7WKiP8tWmRmZmZNTJaW5mNAN2BV+rg2QTIoyMzMrEXKsrhBq5oem5mZ7WucBM3MzDLK2qeZifs0zcysJcvap5mF+zTNzKxFK6hP08zMbF/mhGhmZpaR52mamZll5HmaZmZmGXmeppmZWUZOgmZmZhkVnDQlDZN0v6SK9OeBvPtt1rf/ZZIWSdoiaaakWm9eLWm0pBclrZG0WdLfJV1TQ73PSJonqTL991OFnpeZmVl9Ckqaks4B/gwcAvw+/ekKvCTp3Az7jwPGA7cCRwMvAk9KOrSWXTYCdwGjgEHAd4BbJF2Wc8wRwCPAL4Cj0n8flTS8kHMzMzOrT9b7aVb7LnBjRNyaWyjp6yQJ7cF69r8amBgRE9LfL5f0ceCLwNfzK0fETGBmTtGidATvicC9adlVwB8j4rvVMUr6SFp+dsbzMjMzq1ehl2cPBn5ZQ/mjQJe6dpS0P3AMMCVv0xTg+CxPLunotO7zOcUjajjm01mPaWZmllWhLc0/AicBr+WVn8TOiawmnUmmpKzMK18JnFLXjpKWkiTsEuCWiLgvZ3O3Wo7ZrZZjXQJcAtC9e3emTp0KQN++fWnXrh2zZ88GoFOnTgwePJhp06YBUFJSwsiRI5k1axbr168HoKysjJUrVwKH1xW+NVMVFRVs3LgRgOHDh7N06VKWLVsGwMCBA2ndujXz5s0DoFu3bvTp04fy8nIA2rRpw/Dhw5kxYwabN28GYMSIESxatIgVK1YAMGjQIKqqqpg/fz4APXr0oGfPnsyYMQOAtm3bUlZWRnl5OZWVlQCMHDmSV199lVWrVgEwZMgQKisrWbBgAQC9evWia9euVFRUANC+fXuGDRvG9OnT2bZtGwCjRo1i7ty5rFmzBoChQ4eyYcMGFi5cCEDv3r3p2LEjs2bNAqBDhw4MHTqU559/nohAEqNHj2b27NmsW7cOgGHDhrF27VoWL14M7NnnacmSJQD079+f0tJS5syZA0CXLl0YMGAA06dPB6C0tJQRI0bs1usEpQW+G6w5WL58eVE+T3VRRNRdYecFDQ4BbgYeB/6Ulh0HfBq4OSLupRaSugPLgNERMS2n/CbgnIgYWMe+fYC26XPdBlwZEQ+k27YCF0XE/Tn1zwMmRESdn4yysrKo/uOyJy6+c48PYU3QhKsaOwLbW/yZbZmK9ZmVNDMiymratrsLtu9oreW4m/f7GWuyGqgiGTiUqyuwoq4AImJR+vBlSV1JEvcDadmK3TmmmZlZoert04yIVhl/6lwNKCK2kgzqGZO3aQzJKNpCYs5tQZYX4ZhmZmb1KrRPc0/dATwg6SXgBeBSoDtwH4Ck+wEi4rz098uBRcD8dP9RwDXs3KIdD0yTdD3wBPAp4CPAyL18LmZmto8pOGlK6gD8M3AosH/utoj4dl37RsQjkjoBN5D0j84BTouI19Mq+fM1W5P0YfYGtgH/AK4nTbLpMV+UdBbJlJdvp3XGRcSMQs/NzMysLgUlTUnHAb8DKklGsy4jSX6VwGKSpFWndLBQjX2fEXFS3u93AndmOOZjZL9ZtpmZ2W4pdJ7m7SQr7vQAtgAnk7QOK0hahGZmZi1WoUnzSOCeSOapVAGlEbESuI5kRKuZmVmLVWjS3JrzeCVwWPp4I8mAHjMzsxar0IFAs4BjgVeBqcB30nmT5wJ/K25oZmZmTUuhLc1vAm+mj28A3iJZ1KADuy52YGZm1qIU1NKMiIqcx2+RTD0xMzPbJ+zW4gaSDgeOSH+dFxELixeSmZlZ01ToPM1OwM+AscD294v1W+DCiFhT5PjMzMyajEL7NH8K9CO5CfQB6c8ooA8woY79zMzMmr1CL8+eCnw0Ispzyl6Q9AXgD8ULy8zMrOkptKX5FvBuDeWbAF+aNTOzFq3QpPlt4E5JPaoL0sc/IMO6s2ZmZs1ZvZdnJb0MRE5RH2CxpGXp79Xr0HYh6fM0MzNrkbL0afruIWZmZmRImhFxS0MEYmZm1tTt7uIGJwODSC7bzo2IqcUMyszMrCkqdHGDHsCvgGN4fw3a7pIqgE9FxJu17mxmZtbMFTp69i6S+2j2i4heEdEL6J+W3VXs4MzMzJqSQi/PjgFOiohF1QURsVDSFcCzRY3MzMysiSm0pQk7Tz+pq8zMzKxFKTRpPgvcLalXdYGkQ4E7cUvTzMxauEKT5hXAB4CFkl6X9Drwj7TsimIHZ2Zm1pQU2qe5BvgwcBLwT2nZKxHhxdrNzKzFy5w0JbUG3gGGRsQzwDN7LSozM7MmKPPl2YioAl4H9t974ZiZmTVdhfZp/gfwPUmd90YwZmZmTVmhfZrXkNzlZJmkpeTdWzMijixWYGZmZk1NoUnzMZI5mdoLsZiZmTVpmZKmpAOB24FPAvuRzMm8PCJW773QzMzMmpasfZq3ABcAvwMeAk4BfrSXYjIzM2uSsl6e/TTw+Yh4GEDSL4AXJLVOR9WamZm1eFlbmr2A/6v+JSJeArYB3fdGUGZmZk1R1qTZGtiaV7aN3byJtZmZWXOUNekJeFBSZU7ZAcAESZuqCyJibDGDMzMza0qyJs1JNZQ9WMxAzMzMmrpMSTMi/n1vB2JmZtbU7c5NqM3MzPZJTppmZmYZOWmamZll5KRpZmaWkZOmmZlZRk6aZmZmGTlpmpmZZeSkaWZmlpGTppmZWUZOmmZmZhk5aZqZmWXkpGlmZpaRk6aZmVlGTppmZmYZOWmamZll5KRpZmaWkZOmmZlZRk6aZmZmGTlpmpmZZeSkaWZmllGDJ01Jl0laJGmLpJmSTqyj7iGS/kfS3yVVSZpYQ50LJEUNPwfs1RMxM7N9ToMmTUnjgPHArcDRwIvAk5IOrWWXUmA18D1gRh2H3gQckvsTEVuKFbeZmRk0fEvzamBiREyIiFci4nJgOfDFmipHxOKIuCIiJgJr6zhuRMSK3J/ih25mZvu6BkuakvYHjgGm5G2aAhy/h4dvI+l1SUsl/VbS0Xt4PDMzs12UNOBzdQZaAyvzylcCp+zBcecDFwKzgXbAlcALkoZGxIL8ypIuAS4B6N69O1OnTgWgb9++tGvXjtmzZwPQqVMnBg8ezLRp0wAoKSlh5MiRzJo1i/Xr1wNQVlbGypUrgcP3IHxrqioqKti4cSMAw4cPZ+nSpSxbtgyAgQMH0rp1a+bNmwdAt27d6NOnD+Xl5QC0adOG4cOHM2PGDDZv3gzAiBEjWLRoEStWJBdCBg0aRFVVFfPnzwegR48e9OzZkxkzkp6Itm3bUlZWRnl5OZWVlQCMHDmSV199lVWrVgEwZMgQKisrWbAgeav36tWLrl27UlFRAUD79u0ZNmwY06dPZ9u2bQCMGjWKuXPnsmbNGgCGDh3Khg0bWLhwIQC9e/emY8eOzJo1C4AOHTowdOhQnn/+eSICSYwePZrZs2ezbt06AIYNG8batWtZvHgxsGefpyVLlgDQv39/SktLmTNnDgBdunRhwIABTJ8+HYDS0lJGjBixW69T0vNjLc3y5cuL8nmqiyJiL55CzhNJ3YFlwOiImJZTfhNwTkQMrGf/3wKrI+KCeuq1Bv4K/DEirqirbllZWVT/cdkTF9+5x4ewJmjCVY0dge0t/sy2TMX6zEqaGRFlNW1ryD7N1UAV0DWvvCtQtD7IiKgCKoD+xTqmmZkZNGDSjIitwExgTN6mMSSjaItCkoAjSQYYmZmZFU1D9mkC3AE8IOkl4AXgUqA7cB+ApPsBIuK86h0kHZU+bA9sT3/fGhHz0u3fAv4ELEjrXEGSNGsckWtmZra7GjRpRsQjkjoBN5DMp5wDnBYRr6dVapqv+Ze8308HXgd6p78fBPwE6Aa8k9YfFREvFTV4MzPb5zV0S5OIuBe4t5ZtJ9VQpnqO9xXgK0UJzszMrA5ee9bMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vISdPMzCwjJ00zM7OMnDTNzMwyctI0MzPLyEnTzMwsIydNMzOzjJw0zczMMmrwpCnpMkmLJG2RNFPSifXUH53W2yJpoaRL9/SYZmZmu6NBk6akccB44FbgaOBF4ElJh9ZSvw/w+7Te0cB/AndL+szuHtPMzGx3NXRL82pgYkRMiIhXIuJyYDnwxVrqXwq8GRGXp/UnAJOAa/bgmGZmZrulwZKmpP2BY4ApeZumAMfXstuIGuo/DZRJ2m83j2lmZrZbGrKl2RloDazMK18JdKtln2611C9Jj7c7xzQzM9stJY0dQEOTdAlwSfrrRknzGzOeZqgzsLqxg2gIP/1KY0dgVhT+zBbusNo2NGTSXA1UAV3zyrsCK2rZZ0Ut9belx1Ohx4yInwA/yRy17URSRUSUNXYcZpaNP7PF1WCXZyNiKzATGJO3aQzJiNealNdSvyIi3tvNY5qZme2Whr48ewfwgKSXgBdIRsd2B+4DkHQ/QEScl9a/D/iypDuBHwMnABcAZ2c9ppmZWbE0aNKMiEckdQJuAA4B5gCnRcTraZVD8+ovknQa8EOSKSRvAldExOMFHNOKy5e2zZoXf2aLSBHR2DGYmZk1C1571szMLCMnTTMzs4ycNK0gktTYMZiZNRb3aZqZmWW0z60IZIWTVAocCXwKeAeYC7wGLImIdyUp/O3LzPYBbmlavSTdBXya5O4xHYDeJNN/ngDujIiFjRacmVkDcp+m1UnSIJIFJS4EPh4R/Ujmw94LnA7MlXSJ+zrNbF/glqbVSdI3SJLlqPT3kojYlrP9VpJW6MkR8WYjhWlmOSR1JVlO9PcRsbaOevtFxHsNF1nz55am1ecV4BBJ/QAiYpukEkkHpNsnAJuAMxorQDPbxQ3A/cBrkh6VdFo6NmEHSYcCV+aXW92cNK0+00juKvNbSWdKKo2IbRGxBZKlDknuaVrZmEGa2U7KgNuAr5KMQ/gVsEjS3ZKGpXUuBi6NCH92C+DLs1YvSd1J1v/9ELAUeAl4Ln38JeCzQO+IeLfRgjQzYMfndTzwTET8RFIJ0A/4V5KbXXwImAf0Bb4REeMbLdhmyEnTMkkXxf8Xkn6SvsBAkm+wzwM/joiHGzE8M0tJ+gBwMrAqImbkbTsQGAJcQzIWoV1EbG74KJsvJ02rlaSeJN9QAd4l+Xa6mSRptiXpy1xd10ADM2tcNc2jljQRODwiTmycqJovL25gNZL0RZJpJkNJkuNCksuxfwQei4jXGjE8M6uFpFZAVCfKGhJmG5J7Dt/RCOE1e25p2i7SS7GvAT8AfgQcDJwCnAQM4v37ms7zakBmzYuk/YCyiChv7FiaIydN24Wky4FzI2J4DdtGAv8J9AA+HBGrGzo+M9tVmgz7AK97ROze4yknVpOtQDtJQyBZe1bS/gARMR04B9gCfKzxQjSzPF8C/gLcJ+l0Sd0ktc6tIKm9pE9Uf56tcE6aVpPHgO3AVZLaRURlRGxN+0qIiDeAt4GejRijme1sHMl0sH4k60KXA7dLGinpg2mdzwI3RsTWxgmx+XPStJ2ka8iuJVlRZAzwpqSfSTom3X6opHNJ5nr9svEiNbNqkg4G3gMmpCNiDwN+RjJNbBrwnKTrgKuAGbUdx+rnPk2rkaSDgEOB40luCXZCumkFIOCBiLi5UYIzs51IOgQ4C5gXEU/nbTsauCjd3gHoFRHLGj7KlsFJ03aQ1AX4HMnSW6tJ5mS+DUwH/gTsR3Lp56mIeLWRwjSzGqRTSSIituTedah6dLuk7wKnRcTRjRVjS+CkaTukE54HA78huUTbkeQy7ABgFXBD/gojZtZ01DYFLF0JaBbw84i4reEjazmcNA3Y0Ze5geSb6LScskOB4SSXd/oCZ0bErEYL1Mx2Iqk9sKGu+dLpXYnGAQ95ENCe8UAgqzYIWEQy3QRIlxSJeD0ifklyw+m3gX9rnPDMrBa3AxdK+lCaQGtyQERMcsLcc06aVm0hySXYH0rqXz29pFo6WXoS8M+NEZyZ7UrS2SS3+PoB8GuSKSafknR42sdZ3dc5qXrete0ZX561HSQdB9xHMgDox8CzwLqI2Jj2idwPbImIcxsxTDNLSZoAVAH/j+SuJecDhwPzgd+TfIYHAuMjwgsaFIGTpu0k/TZ6IzCW5M4m5cBbJGvPLgcuioiXGy9CMwNI75N5LdA+Iq7PKR9M0vo8AzgAOAiYFBGfb4w4WxonTatROv3kE8AnSZbMmwM8GhF/b8y4zOx9kjoAXSPi7+nSeO/lDgiSNA54CBgWEX9tpDBbFCdNq5ekVhGxvbHjMLP6peMRFBFVki4muTR7YGPH1VL4fppWLydMs+Yj7/PaDvhWY8XSErmlaWbWQqW3C6vyF9/icdI0MzPLyPM0zczMMnLSNDMzy8hJ08zMLCMnTTMzs4ycNM3MzDJy0jQzM8vo/wNPTIQ+y8kdRgAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 504x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Construct quantum circuit\n",
|
|
"circ = QuantumCircuit(3, 3)\n",
|
|
"circ.h(0)\n",
|
|
"circ.cx(0, 1)\n",
|
|
"circ.cx(1, 2)\n",
|
|
"circ.measure([0, 1, 2], [0, 1, 2])\n",
|
|
"\n",
|
|
"sim_ideal = AerSimulator()\n",
|
|
"\n",
|
|
"# Execute and get counts\n",
|
|
"result = sim_ideal.run(transpile(circ, sim_ideal)).result()\n",
|
|
"counts = result.get_counts(0)\n",
|
|
"plot_histogram(counts, title='Ideal counts for 3-qubit GHZ state')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Generating a simulator that mimics a device\n",
|
|
"\n",
|
|
"We call `from_backend` to create a simulator for `ibmq_vigo`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"sim_vigo = AerSimulator.from_backend(device_backend)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"By storing the device properties in `vigo_simulator`, we ensure that the appropriate basis gates and coupling map are used when compiling circuits for simulation, thereby most closely mimicking the gates that will be executed on a real device. In addition `vigo_simulator` contains an approximate noise model consisting of:\n",
|
|
"\n",
|
|
"* **Single-qubit gate errors** consisting of a single qubit depolarizing error followed by a single qubit thermal relaxation error.\n",
|
|
"* **Two-qubit gate errors** consisting of a two-qubit depolarizing error followed by single-qubit thermal relaxation errors on both qubits in the gate.\n",
|
|
"* **Single-qubit readout errors** on the classical bit value obtained from measurements on individual qubits.\n",
|
|
"\n",
|
|
"For the gate errors the error parameter of the thermal relaxation errors is derived using the `thermal_relaxation_error` function from `aer.noise.errors` module, along with the individual qubit $T_1$ and $T_2$ parameters, and the `gate_time` parameter from the device backend properties. The probability of the depolarizing error is then set so that the combined average gate infidelity from the depolarizing error followed by the thermal relaxation is equal to the `gate_error` value from the backend properties.\n",
|
|
"\n",
|
|
"For the readout errors the probability that the recorded classical bit value will be flipped from the true outcome after a measurement is given by the qubit `readout_errors`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Running a noise simulation\n",
|
|
"\n",
|
|
"Once we have created a noisy simulator backend based on a real device we can use it to run noisy simulations.\n",
|
|
"\n",
|
|
"**Important:** When running noisy simulations it is *critical* to `transpile` the circuit for the backend so that the circuit is transpiled to the correct noisy basis gate set for the backend."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2019-08-19T16:57:36.864987Z",
|
|
"start_time": "2019-08-19T16:57:36.672055Z"
|
|
},
|
|
"tags": [
|
|
"nbsphinx-thumbnail"
|
|
]
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFTCAYAAABbKVcuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7JklEQVR4nO3deZwU1bn/8c/DjAwgoCwCMsM+SlgUhTFAROQmKobkkug1LtEYE5e4L1x/MSbGEGPUJF6jxnhJuCZEjeIWxSwQdwiK4EBEgQgoi+wIbqxDZnx+f5yasWm6Z2qYnulu+L5fr35Nd9WpM0/1Uk/VqVOnzN0RERGRujXLdgAiIiL5QklTREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTdlrZnasmS01s61m9tVsx1MfZnaemc2sZf5UM/tmU8a0v4i+L71rmb/CzE7Yy7p7mpmbWeHeRwhmdpyZLW5IHZmUa/HEEX0OpTHKjTKz1U0RUyYoaeYIM/u6mZVHG5R10UZ7RBP831hf7DRuAu5x99bu/lQGYrnGzJaZ2cdmttbMftnQjd/ecvcvuvsforhqTbDVzOxEM3vRzLaY2WYze93MrjOzFtH88Wb2YIrlaj6D6PNPfvzbzJbVJ/69SR4NSVb1EX1flkX/c5KZ3dzY/7O+3P0f7t4323FUy7V49mdKmjnAzMYBdwK3AJ2B7sC9wFeyGFYcPYCFe7Ngmo3508Bgd28LDAQGAVfufXhNx8y+BjwOPAT0cPcOwBlACdAtbj1RQql5AIcD7wM/aYSwRaS+3F2PLD6Ag4CtwNdqKVNESKpro8edQFE07zxgZlJ5B0qj55OAXwN/BbYAs4E+0bwZUdltUQxnAB2BvwAfEjbW/wCapYjpHeATYEe0bBHQlZD43gfeBi5MKD+ekFQeBD4GLqjjfekAPAfcW0eZp6P65hASy8xoXs9o3QoTyr9U/X+j9+1l4B7gI+At4AvJZYF+wE6gKlrPD1PEYcAq4L/rWKfxwIMpptd8XknTC4GZwP/VUudngfLoPdgA3BFNfzeqd2v0GA70AV4ANgObgD8CB0flH0j6PL8bTR8GvBJ9H+YDo9LE8S3gzwmvlwKPJbxeBRyVuL7ARcC/gV3R//xzNH8FcC3wRvTZPAK0SPN/C4Dbo/VZBlyW+LkTfl/3AeuANcDN0TJF0ToNTKjrkGj9OwGjgNUJ87oBfwLei96/exLmfRv4F/AB8HfCTlOqWHtGsX0z+nw2AT+I+TtPjue6aH22AIuJvruEA6HvEX6fm4FHgfZp4hkFrAa+C2yM3qOvAmOAJYTf8ffjxBfN/39RHWuj9yRxO1QUfU7vEr6nE4CWqdYt1x9ZD2B/fwAnA5UkbNxTlLkJeDX6MR9C2Ij9JJp3HnUnzc2EjWshYUM5OVXZ6PWt0Rf6gOhxHGBp4loBnJDwegbhCLkFcBRhA/P5aN54wgbyq9EPu2WaOr9OSAAeLT+olvdlcrRROJBwZLqG+iXNSuCaaD3PIGyg26cpO7OWOD4T/a+edXzW46lf0rwD+CdpEkZUZhbwjeh5a2BYLetfCpxI2IAdEn1ed9byeRZH350x0Wd2YvT6kBRx9CYkoWaEnaeVRBvCaN4HRDtf7Pn9vDnF92pOVE97QkK6OM36X0zY4ekWlX2R3ZPmk8Bvou9Ip6je70Tzfgf8NKGuy4Bp0fNRCfEXEHYYfhnV0wIYEc37CmEHsR/h93UD8EqaWKs/k4lAS0JLSgXQL8bvPDGevoSdkK4J9VbvCF8V1VESfc6/AR5OE88owm/gRsJv4ELCb+4hoA0wgLAT0StGfCcTkuHA6D16KOlz/iVhB7d9VPefgVuT1y0fHlkPYH9/AGcD6+so8w4wJuH1aGBF9Pw86k6a/5cwbwzwVqqy0eubgCmk2IiniGsF0UaWsNGqAtokzL8VmBQ9Hw/MqMf7chjhyLFLmvkFhCT8mYRpt1C/pLmWhB0Cwgb1G2nK1pY0R0T/q0XCtMmEJLI9oc7xhKOqD5MeeyRN4L8IiaZ3He/TDODHQMek6Xusf4plvwr8M9XnGb2+DnggaZm/A99MU98qYDBwJvDb6P38DOEo9Olavp+pkuY5Ca9/DkxI8z9fICGhAidVrzfhVEcFCTtowFnAi9HzE4B3Eua9DJwbPR/Fp0lqOCGZ7PFeAlOB8xNeN4s+8x4pylZ/JiVJ37kzve7feWI8pYQjwxOAA5L+x7/YvcXkUMLvJFXsowhJsSB63SaKb2hCmbnAV2PE9zvgtoR5h/Npi4IRWrP6JMwfDixPXrd8eOicZvZtBjrW0WGjes+92spoWlzrE55vJxyRpPMLwp7zM1GnnO/F/B9dgffdfUtSnMUJr1fFrAt3X0o4X3ovgJl9P6FjzATCnm5hUp0r96ypVms8+tUmLF+f97Xa5ujvodUT3P1Mdz8YmEdI8NUedfeDEx/JlZnZ4YQmxW961GGmFucTNlBvmdlrZvbldAXNrLOZTTazNWb2MaGpvGMtdfcAvmZmH1Y/CDsIh6YpP52wARwZPX8JOD56TK9jPZLF/c52Jf13oAfhCGpdQvy/IRwpQTgqbWVmQ82sJ6F15MkU/6MbsNLdK1PM6wHclVD/+4QkUZyibLV06xbrd+7ubwNXE3bCNkafaXW5HsCTCfH8i7Az2zlNLJvdvSp6viP6uyFh/o6Y8dX2ORwCtALmJsQ1LZqed5Q0s28WYW/4q7WUWUv4MVTrHk2DsAfXqnqGmXVpSDDuvsXd/9vdewNjgXFm9oUYi64F2ptZm6Q41yRWX89wCgnn4XD3W/zTDjIXE/b8K9m9k033hOfbor+tEqYlvzfFZmZJy69lT3XFvZiwnqfWUa5OZtYKeIJwZPV0XeXdfam7n0VIBD8DHjezA0kd8y3R9CM8dLY6h7CBr6kuqfwqwpFmYpI/0N1vSxNOddI8Lno+nbqTZn2/E8nWkf47sIrw2+qYEH9bdx8AECWLRwlHn2cBf0na6Uusp3uaHdtVhObexPeopbu/shfrUtvvfDfu/pC7j4jKO+Gzr47ni0nxtHD3NanqyWB8tX0OmwjJd0BCTAd56OiWd5Q0s8zdPyKcU/i1mX3VzFqZ2QFm9kUz+3lU7GHgBjM7xMw6RuWrL12YDwwws6OiSxvG1zOEDYRzTgCY2ZfNrDRKJh8R9lI/ibEeqwjnOG41sxZmdiThKGiPSyzSMbMLzKxT9Lw/cD3wfJr/V0XomDE+es/6EzpYVM9/j5DIzjGzAjP7NlECTtAJuDJ6v79GOC/1txT/bgNQYmbN08TyCfDfwI/M7EIza2fBYaTfw09nAuHI9QdxCpvZOWZ2SBTDh9HkTwg7FZ+Q8NkSmt+2Ah+ZWTGh40aiDUnlHwT+08xGR+9hi+iaupI04UwH/oPQHLqa0InsZEKHrX+mWSb5f9bXo4TPsMTM2hE6wQDg7uuAZ4D/MbO2ZtbMzPqY2fEJyz9EOJ99dvQ8lTmEpHCbmR0YvQ/HRvMmANeb2QAAMzso+i7tjdp+5zXMrK+Zfd7Migid1Hbw6W90AvBTM+sRlT3EzL6yl/HUJ75HgfPMrH+04/ej6oWi7+ZE4JcJv+9iMxudobialJJmDnD3/wHGEToRvEfYW7wceCoqcjOhh+QbwJuEJr+bo2WXEM5DPkfosVjn9YRJxgN/iJpNTiecS3yOsHGdRei9+mLMus4inLdZS2jm+pG7P1ePWI4F3jSzbYTk9Tfg+7WUv5zQdLSecG7s90nzLyQkhs2ETg3Je/+zCeu7CfgpcJq7b2ZPLxCaiteb2aZUgbj7I8DphKO3VVGdjxLO7T1WyzrUMLPuwDcIPVY/sqTrNdMsdjKwMJp/F+H82A533x6t08vRZzuMcO5zMGFn6K+EnY5EtxI2ih+a2bXRjtBXCJ9B9ffy/5FmuxF9F7cSkiXu/jGhR+vLCU2Aye4D+kf/86la36DUJhLOs84n/C6S1+lcoDmwiHCO+HF2b0afTWiV6Eo4P5lqvaqA/yScn3uX0OP0jGjek4SjvMlRk/cC4It7sR5Qy+88SRFwG+E7tp6w83d9NO8uQoebZ8xsC6HjztC9jCd2fO4+ldCb9gXC6Z0Xkpa9Lpr+avQ+PUfo0JR3bPdTOiL5y8zOI3TeafRBIURk/6QjTRERkZiUNEVERGJS86yIiEhMOtIUERGJSUlTREQkpqzcdilXdOzY0Xv27JntMEREJIfMnTt3k7unHLFov06aPXv2pLy8PNthiIhIDjGztENyqnlWREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTRERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDRFRERiUtIUERGJSUlTREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTRERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDQbaNq0afTt25fS0lJuu+22tOWeeOIJzIzy8vKaaW+88QbDhw9nwIABHHHEEezcuROAuXPncsQRR1BaWsqVV16Juzf6eoiISN2UNBugqqqKyy67jKlTp7Jo0SIefvhhFi1atEe5LVu2cNdddzF06NCaaZWVlZxzzjlMmDCBhQsX8tJLL3HAAQcAcMkllzBx4kSWLl3K0qVLmTZtWpOtk4iIpKek2QBz5syhtLSU3r1707x5c84880ymTJmyR7kf/vCHXHfddbRo0aJm2jPPPMORRx7JoEGDAOjQoQMFBQWsW7eOjz/+mGHDhmFmnHvuuTz11FNNtUoiIlILJc0GWLNmDd26dat5XVJSwpo1a3YrM2/ePFatWsWXvvSl3aYvWbIEM2P06NEMHjyYn//85zV1lpSU1FqniIhkR2G2A9iXffLJJ4wbN45JkybtMa+yspKZM2fy2muv0apVK77whS8wZMgQDjrooKYPVEREYtGRZgMUFxezatWqmterV6+muLi45vWWLVtYsGABo0aNomfPnrz66quMHTuW8vJySkpKGDlyJB07dqRVq1aMGTOGefPmUVxczOrVq9PWKSIi2aOk2QDHHHMMS5cuZfny5ezatYvJkyczduzYmvkHHXQQmzZtYsWKFaxYsYJhw4bx9NNPU1ZWxujRo3nzzTfZvn07lZWVTJ8+nf79+3PooYfStm1bXn31Vdyd+++/n6985StZXEsREammpNkAhYWF3HPPPYwePZp+/fpx+umnM2DAAG688UaefvrpWpdt164d48aN45hjjuGoo45i8ODBNec97733Xi644AJKS0vp06cPX/ziF5tidUREpA62P18DWFZW5onXTYqIiJjZXHcvSzVPR5oiIiIxKWmKiEiTaMgIagDvvvsurVu35vbbb693nZmipCkiIo2uISOoVRs3btxufTzi1plJSpoiItLoGjKCGsBTTz1Fr169GDBgQL3rzCQlTRERaXQNGUFt69at/OxnP+NHP/pRvevMNI0IJCIiWVfbCGrjx4/nmmuuoXXr1k0fWBIlTRERaXT1GUENYP369YwdO5ann36a2bNn8/jjj/Pd736XDz/8kGbNmtGiRQuGDBlSa52NQUlTREQaXeIIasXFxUyePJmHHnqoZn71CGrVRo0axe23305ZWRn/+Mc/aqaPHz+e1q1bc/nll1NZWVlrnY1B5zRFRKTRNWQEtfrW2Zg0IpBGBBIRkQQaEUhERCQDlDRFRERiUkegDLjwzsatf+LVjVu/iIjE0+RHmmZ2qZktN7OdZjbXzI6LudwIM6s0swVJ088zM0/xaJGuLhERkb3RpEnTzM4A7gJuAY4GXgGmmln3OpZrB9wPPJ+myHbg0MSHu+/MVNwiIiLQ9Eea44BJ7j7R3f/l7lcA64BL6ljuPuAPwKw0893d1yc+MhiziIgI0IRJ08yaA0OAZ5JmPQN8rpblLgU6AzfXUn1LM1tpZqvN7C9mdnSDAxYREUnSlB2BOgIFwIak6RuAE1ItYGZHAD8Chrl7lZmlKrYY+DYwH2gDXAW8bGaD3H1pijovAi4C6Nq1Ky+99BIAvXv3pk2bNsyfPx+ADh06MGDAAGbMmAGEi2hHjBjBvHnz+PjjjwEoKytjw4YNQJ+478FeqaioYNascJDdsmVLhg4dyuzZs9mxYwcAw4cPZ/ny5axfHw6w+/fvT1VVFYsXLwbC8FUlJSXMnj0bgNatW1NWVsasWbOoqKgAYMSIESxZsoSNGzcCMHDgQCoqKli6NLyF3bp1o3PnzjX3t2vbti2DBw9m5syZVFZWAjBy5EgWLlzI5s2bARg0aBBbtmxh2bJlAPTs2ZP27dszb948ANq1a8egQYOYPn067o6ZcfzxxzN//nw++OADAAYPHsz777/PihUrgIZ9TtXDbR122GEUFRWxYEE4Pd6pUycOP/xwZs6cCUBRURHDhw+nvLycrVu3AjB06FBWr15dMxh03759KSgoqLkNUZcuXejVq5c+J31O+pz2gc+pNk02uIGZdQXWAMe7+4yE6TcCZ7t736TyRcA/gVvd/YFo2njgNHcfWMv/KQBeB1509ytriylTgxuo96yIyL6jtsENmvJIcxNQRWhqTdQZSHUO8lCgH/B7M/t9NK0ZYGZWCYxx9+SmXqIj0nLgsIxFLiIiQhOe03T3XcBc4MSkWScSetEmWwMcARyV8JgAvB09T7UMFtpwjyR0MBIREcmYph7c4A7gATObA7wMXAx0JSRDzOx+AHc/193/DSRfk7kRqHD3BQnTfgS8CiwF2gJXEpJmXT1yRURE6qVJk6a7P2JmHYAbCM2vCwjNrCujIrVer5nGwcBvgS7AR4TzoCPdfU7DIxYRkUzZF/p/NPkweu5+L3Bvmnmj6lh2PDA+ado1wDWZiU5ERCQ9DdguIiISk5KmiIhITEqaIiIiMSlpioiIxKSkKSIiEpOSpoiISExKmiIiIjEpaYqIiMSkpCkiIhKTkqaIiEhMSpoiIiIxKWmKiIjEpKQpIiISk5KmiIhITEqaIiIiMSlpioiIxKSkKSIiEpOSpoiISExKmiIiIjEpaYqIiMSkpCkiIhKTkqaIiEhMSpoiIiIxKWmKiIjEpKQpIiISk5KmiIhITEqaIiIiMSlpioiIxKSkKSIiEpOSpoiISExKmiIiIjEpaYqIiMSkpCkiIhKTkqaIiEhMSpoiIiIxKWmKiIjEpKQpIiISk5KmiIhITEqaIiIiMdUraZpZMzNrlvC6i5ldYGbHZj40ERGR3FLfI82/AlcAmFlroBz4BfCSmZ2b4dhERERySn2TZhnwQvT8VOBjoBNwIXBtBuMSERHJOfVNmq2BD6PnJwFPuvu/CYm0TwbjEhERyTn1TZrvAsea2YHAaODZaHp7YHsmAxMREck1hfUsfwfwALAVWAnMiKaPBN7MYFwiIiI5p15J091/Y2ZzgW7As+7+STTrHeCHmQ5OREQkl9T3SBN3Lyf0mk2c9teMRSQiIpKj6j24gZldamYLzWy7mfWOpl1nZqdnPjwREZHcUd/BDa4GbgB+C1jCrLXA5ZkLS0REJPfU90jzYuBCd78LqEyYPg8YkLGoREREclB9k2YPYEGK6f8GWjY8HBERkdxV36S5DBicYvoYYFHDwxEREcld9e09eztwj5m1IpzTHG5m3wC+C3w708GJiIjkkvpep/l7MysEbgFaEQY6WAtc6e6PNEJ8IiIiOWNvrtOcCEw0s45AM3ffmPmwREREck+9k2Y1d9+UyUBERERyXZ1J08zeAI539w/M7E3A05V19yMzGZyIiEguiXOk+QRQkfA8bdIUERHZl9WZNN39xwnPxzdqNCIiIjmsvsPovWBmB6eY3tbMXshYVCIiIjmovoMbjAKap5jeAjiuwdGIiIjksFi9Z80scRSgI83s/YTXBcBoYE0mAxMREck1cS85KSd0AHLgmRTzdwBXZCooERGRXBS3ebYX0IcwdN5no9fVj2Kgrbv/Lk5F0f04l5vZTjOba2Zpm3XN7Hgze8XMNpvZDjN7y8yuTVHuv8xskZlVRH9PibleIiIiscU60nT3ldHTet+0OpGZnQHcBVwKzIz+TjWz/u7+bopFtgJ3A28C24Fjgd+Y2XZ3vzeqczjwCPAj4E/AqcBjZnasu89uSLwiIiKJ4gxucCrwZ3f/d/Q8LXf/Ux3VjQMmRUPxAVxhZicDlwDXp6hvLjA3YdLyKIbjgHujaVcDL7r7T6PXPzWz/4imn1VHPCIiIrHFOdJ8HOgCbIyep+OETkEpmVlzYAjhTimJngE+FyMOzOzoqOz4hMnDgV8lFf07cHmcOkVEROKKM7hBs1TP90JHQlLdkDR9A3BCbQua2WrgEEK8P3b3CQmzu6Sps0uaui4CLgLo2rUrL730EgC9e/emTZs2zJ8/H4AOHTowYMAAZsyYAUBhYSEjRoxg3rx5fPzxxwCUlZWxYcMGwunexlNRUcGsWbMAaNmyJUOHDmX27Nns2LEDgOHDh7N8+XLWr18PQP/+/amqqmLx4sUAFBcXU1JSwuzZobW6devWlJWVMWvWLCoqwmBPI0aMYMmSJWzcGMbfHzhwIBUVFSxduhSAbt260blzZ8rLywFo27YtgwcPZubMmVRWVgIwcuRIFi5cyObNmwEYNGgQW7ZsYdmyZQD07NmT9u3bM2/ePADatWvHoEGDmD59Ou6OmXH88cczf/58PvjgAwAGDx7M+++/z4oVK4CGfU6rVq0C4LDDDqOoqIgFC8L91Dt16sThhx/OzJkzASgqKmL48OGUl5ezdetWAIYOHcrq1atZsyZ0Eu/bty8FBQUsWhRuI9ulSxd69eqlz0mfkz6nWj4nKKMxrVu3LiOfU23MvWlGxTOzroTLUo539xkJ028Eznb3vrUs2wtoDQwDfgZc5e4PRPN2ARe4+/0J5c8FJrp7UW0xlZWVefWXtiEuvLPBVdRq4tWNW7+ISFPIl22lmc1195QZPu45zVjqOKe5CagCOidN7wysr6Pe5dHTN82sM6F59oFo2vq9qVNERKS+4p7TjKPWc5ruvsvM5gInAo8lzDqRMBB8XM2AxCPIWVEdv0iq85V61CkiIlKnep3TzIA7gAfMbA7wMnAx0BWYAGBm90f/89zo9RXAcmBxtPxI4Fo+7TkL4RKWGWb2PeAp4BTgP4ARGYxbRERk729CvTfc/REz6wDcABwKLADGJFwH2j1pkQLCOcyeQCXwDvA9oiQb1fmKmZ0J3AzcFJU5Q9doiohIpjX1dZpEgxLcm2beqKTXdwJ3xqjzceI3I4uIiOyVJrtOU0REJN815XWaIiIieU1JUEREJKZ6J00zG2xm95tZefR4IOl+myIiIvukeiVNMzsbeI3Q8/Vv0aMzMMfMzsl8eCIiIrmjvpec/BT4obvfkjjRzK4nXPLxYKYCExERyTX1bZ49BHg0xfTHgE4ND0dERCR31TdpvgiMSjF9FDC9ocGIiIjksvoO2D4VuNXMyoBXo2nDgFPZ/R6XIiIi+5y9HbC95p6UCX5FmpF+RERE9gVNPWC7iIhI3lJCFBERianedzkxs3bAFwl3JGmeOM/db8pQXCIiIjmnXknTzIYBfwUqCJefrCEMdFABrCDcmktERGSfVN/m2V8AfwSKgZ3A5wlHnOWE+16KiIjss+qbNI8E7nF3B6qAInffAFyHLjkREZF9XH2T5q6E5xuAHtHzrUDXjEQkIiKSo+rbEWgecAywBHgJuNnMOgPnAG9kNjQREZHcUt8jzR8Aa6PnNwDvEQY1aMeegx2IiIjsU+p1pOnu5QnP3yNceiIiIrJfqPd1mgBm1gfoF71c5O7LMheSiIhIbqrvdZodgPuAscAnn062vwDfdvfNGY5PREQkZ9T3nOb/AaXAcUCL6DES6AVMzGxoIiIiuaW+zbOjgS+4+6yEaS+b2XeA5zIXloiISO6p75Hme8C2FNO3A2qaFRGRfVp9k+ZNwJ1mVlw9IXr+P2jcWRER2cfV2TxrZm8CnjCpF7DCzNZEr6vHoe1EOOcpIiKyT4pzTvPxRo9CREQkD9SZNN39x00RiIiISK7b28ENPg/0JzTbLnT3lzIZlIiISC6q7+AGxcCTwBA+HYO2q5mVA6e4+9q0C4uIiOS5+vaevZtwH81Sd+/m7t2Aw6Jpd2c6OBERkVxS3+bZE4FR7r68eoK7LzOzK4HnMxqZiIhIjqnvkSbsfvlJbdNERET2KfVNms8DvzKzbtUTzKw7cCc60hQRkX1cfZPmlcCBwDIzW2lmK4F3omlXZjo4ERGRXFLfc5qbgc8Co4DPRNP+5e4arF1ERPZ5sZOmmRUAHwGD3P1Z4NlGi0pERCQHxW6edfcqYCXQvPHCERERyV31Paf5E+A2M+vYGMGIiIjksvqe07yWcJeTNWa2mqR7a7r7kZkKTEREJNfUN2k+Trgm0xohFhERkZwWK2maWSvgF8BXgQMI12Re4e6bGi80ERGR3BL3nOaPgfOAvwIPAycA/9tIMYmIiOSkuM2zpwLnu/tkADP7I/CymRVEvWpFRET2eXGPNLsB/6h+4e5zgEqga2MEJSIikoviJs0CYFfStEr28ibWIiIi+Shu0jPgQTOrSJjWAphoZturJ7j72EwGJyIikkviJs0/pJj2YCYDERERyXWxkqa7f6uxAxEREcl1e3MTahERkf2SkqaIiEhMSpoiIiIxKWmKiIjEpKQpIiISk5KmiIhITEqaIiIiMSlpioiIxKSkKSIiEpOSpoiISExKmiIiIjEpaYqIiMSkpCkiIhJTkydNM7vUzJab2U4zm2tmx9VS9lAze8jM3jKzKjOblKLMeWbmKR4tGnVFRERkv9OkSdPMzgDuAm4BjgZeAaaaWfc0ixQBm4DbgNm1VL0dODTx4e47MxW3iIgINP2R5jhgkrtPdPd/ufsVwDrgklSF3X2Fu1/p7pOA92up1919feIj86GLiMj+rsmSppk1B4YAzyTNegb4XAOrb2lmK81stZn9xcyObmB9IiIieyhswv/VESgANiRN3wCc0IB6FwPfBuYDbYCrgJfNbJC7L00ubGYXARcBdO3alZdeegmA3r1706ZNG+bPnw9Ahw4dGDBgADNmzACgsLCQESNGMG/ePD7++GMAysrK2LBhA9CnAeHXraKiglmzZgHQsmVLhg4dyuzZs9mxYwcAw4cPZ/ny5axfHw6w+/fvT1VVFYsXLwaguLiYkpISZs8OLdytW7emrKyMWbNmUVFRAcCIESNYsmQJGzduBGDgwIFUVFSwdGl4C7t160bnzp0pLy8HoG3btgwePJiZM2dSWVkJwMiRI1m4cCGbN28GYNCgQWzZsoVly5YB0LNnT9q3b8+8efMAaNeuHYMGDWL69Om4O2bG8ccfz/z58/nggw8AGDx4MO+//z4rVqwAGvY5rVq1CoDDDjuMoqIiFixYAECnTp04/PDDmTlzJgBFRUUMHz6c8vJytm7dCsDQoUNZvXo1a9asAaBv374UFBSwaNEiALp06UKvXr30Oelz0udUy+cEZTSmdevWZeRzqo25eyOuQsI/MusKrAGOd/cZCdNvBM529751LP8XYJO7n1dHuQLgdeBFd7+ytrJlZWVe/aVtiAvvbHAVtZp4dePWLyLSFPJlW2lmc909ZYZvynOam4AqoHPS9M5Axs5BunsVUA4clqk6RUREoAmTprvvAuYCJybNOpHQizYjzMyAIwkdjERERDKmKc9pAtwBPGBmc4CXgYuBrsAEADO7H8Ddz61ewMyOip62BT6JXu9y90XR/B8BrwJLozJXEpJmyh65IiIie6tJk6a7P2JmHYAbCNdTLgDGuPvKqEiq6zX/mfT6P4GVQM/o9cHAb4EuwEdR+ZHuPiejwYuIyH6vqY80cfd7gXvTzBuVYprVUd81wDUZCU5ERKQWGntWREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTRERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDRFRERiUtIUERGJSUlTREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTRERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDRFRERiUtIUERGJSUlTREQkJiVNERGRmJQ0RUREYlLSFBERiUlJU0REJCYlTRERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDRFRERiUtIUERGJSUlTREQkJiXN/dy0adPo27cvpaWl3HbbbXvMr6io4IwzzqC0tJShQ4eyYsUKAObMmcNRRx3FUUcdxaBBg3jyySdrlvnlL3/JgAEDGDhwIGeddRY7d+5sqtUREWlUSpr7saqqKi677DKmTp3KokWLePjhh1m0aNFuZe677z7atWvH22+/zTXXXMN1110HwMCBAykvL+f1119n2rRpfOc736GyspI1a9Zw9913U15ezoIFC6iqqmLy5MnZWD0RkYxT0tyPzZkzh9LSUnr37k3z5s0588wzmTJlym5lpkyZwje/+U0ATjvtNJ5//nncnVatWlFYWAjAzp07MbOaZSorK9mxYweVlZVs376drl27Nt1KiYg0IiXN/diaNWvo1q1bzeuSkhLWrFmTtkxhYSEHHXQQmzdvBmD27NkMGDCAI444ggkTJlBYWEhxcTHXXnst3bt359BDD+Wggw7ipJNOarqVEhFpREqasteGDh3KwoULee2117j11lvZuXMnH3zwAVOmTGH58uWsXbuWbdu28eCDD2Y7VBGRjFDS3I8VFxezatWqmterV6+muLg4bZnKyko++ugjOnTosFuZfv360bp1axYsWMBzzz1Hr169OOSQQzjggAM49dRTeeWVVxp/ZUREmoCS5n7smGOOYenSpSxfvpxdu3YxefJkxo4du1uZsWPH8oc//AGAxx9/nM9//vOYGcuXL6eyshKAlStX8tZbb9GzZ0+6d+/Oq6++yvbt23F3nn/+efr169fk6yayL9rb3u7PPvssQ4YM4YgjjmDIkCG88MILAGzZsqWmF/xRRx1Fx44dufrqq5twjfJPYbYDkOwpLCzknnvuYfTo0VRVVfHtb3+bAQMGcOONN1JWVsbYsWM5//zz+cY3vkFpaSnt27ev6Qk7c+ZMbrvtNg444ACaNWvGvffeS8eOHenYsSOnnXYagwcPprCwkKOPPpqLLrooy2sqkv+qe7s/++yzlJSUcMwxxzB27Fj69+9fUyaxt/vkyZO57rrreOSRR+jYsSN//vOf6dq1KwsWLGD06NGsWbOGNm3a8Prrr9csP2TIEE499dQsrF3+MHfPdgxZU1ZW5uXl5Q2u58I7Gx5LbSZe3bj1i0jumzVrFuPHj+fvf/87ALfeeisA119/fU2Z0aNHM378eIYPH05lZSVdunThvffe2613u7vToUMH1q1bR1FRUc30JUuW8IUvfIF33313t/KZlC/bSjOb6+5lqeapeVZEJA80tLd7tSeeeILBgwfvljABJk+ezBlnnNFoCXNfoeZZEZH9xMKFC7nuuut45pln9pg3efJkHnjggSxElV+UNPdz+dJcIpIp06ZN46qrrqKqqooLLriA733ve7vNr6io4Nxzz2Xu3Ll06NCBRx55hJ49e7J582ZOO+00XnvtNc477zzuueceIHSmOe6442qWX716Neeccw533nlnRuOuT2/3kpKSPXq7r169mlNOOYX777+fPn367Lbc/PnzqaysZMiQIRmNeV+k5lkR2W80ZOjIFi1a8JOf/ITbb799t/LVnWmqHz169GiUzjQN6e3+4Ycf8qUvfYnbbruNY489do+6H374Yc4666yMx7wvUtIUkf1GQ4aOPPDAAxkxYgQtWrRIW/+SJUvYuHHjbkeemZLY271fv36cfvrpNb3dn376aQDOP/98Nm/eTGlpKXfccUfNZSn33HMPb7/9NjfddFPN5SUbN26sqfvRRx9V0oxJzbMist9I1Zlm9uzZacskdqbp2LFjnfU3dmeaMWPGMGbMmN2m3XTTTTXPW7RowWOPPbbHcjfccAM33HBD2nqXLVuWuSD3cTrSFBHJkMmTJ+uIbR+npCl5a29HR4FwjVtpaSl9+/atue5t8eLFu42O0rZt24x35pDsytTQkamoM83+Qc2zkpcaMjrKokWLmDx5MgsXLmTt2rWccMIJLFmyhL59+9aMjlJVVUVxcTGnnHJKo8S/tz04IST8++67j4KCAu6++25Gjx4NwIcffsgFF1zAggULMDN+97vfMXz48LyJv2fPnrRp04aCggIKCwvJxMAjyRI70xQXFzN58mQeeuih3cpUd6YZPnz4bp1p6tJUnWnU4z27dKQpeakhHTqmTJnCmWeeSVFREb169aK0tJQ5c+bstuzzzz9Pnz596NGjR8Zjb0gPzsSEP23aNC699FKqqqoAuOqqqzj55JN56623mD9/fqON+dtY8QO8+OKLvP76642SMKFhnWkgJPZx48YxadIkSkpKdltvdabZP+hIU/JSQzp0rFmzhmHDhu22bPLIKo15biox4QM1CT/xKHnKlCmMHz8eCAn/8ssvrzXh9+/fnxkzZjBp0iQAmjdvTvPmzfMm/sY6Ik5lbzvTALs18SdTZ5r9g440RZLs2rWLp59+mq997WuNUn9DhkNLt+zy5cs55JBD+Na3vsXRRx/NBRdcwLZt2/ImfgAz46STTmLIkCH89re/bZTYRRpKSVPyUkM6dNS17NSpUxk8eDCdO3du5LXInMrKSubNm8cll1zCP//5Tw488MCUnaNy2cyZM5k3bx5Tp07l17/+NTNmzMh2SCJ7UPOs5KWGdOgYO3YsX//61xk3bhxr165l6dKlfPazn61ZrrE7dDRkOLR0y5aUlFBSUsLQoUOB0CTaWEmzMeKvXgagU6dOnHLKKcyZM4eRI0c2yjo0ZmcadaTZt+lIU/JSQzp0DBgwgNNPP53+/ftz8skn8+tf/5qCggIAtm3bxrPPPtuo9xRsyHBoY8eOZfLkyVRUVLB8+fKahN+lSxe6devG4sWLgdCRKfEcY67Hv23bNrZs2QKEz+CZZ55h4MCBjRK/SEPoSFPyVkM6dPzgBz/gBz/4wR7TDzzwwD1upZRpDbn5d2LCLyws3C3h/+pXv+Lss89m165d9O7dm9///vd5E/+GDRtqLu+prKzk61//OieffHKjxC/SEE1+E2ozuxT4f8ChwELganf/Ry3ljwfuAAYAa4Gfu/uEhtRZTTehzu/YRfZWPjfP5vNvNl9iz5mbUJvZGcBdwC3A0cArwFQz656mfC/gb1G5o4FbgV+Z2X/tbZ0iIiJ7q6mbZ8cBk9x9YvT6CjM7GbgEuD5F+YuBte5+RfT6X2Y2FLgWeGIv65R9iI4Y0tNRvkjmNVnSNLPmwBDg9qRZzwCfS7PY8Gh+or8D3zSzAwDbizpFpIGU8GV/1ZTNsx2BAmBD0vQNQJc0y3RJU74wqm9v6hQREdkrTdYRyMy6AmuA4919RsL0G4Gz3b1vimWWAA+6+00J00YC04GuhCPN+tZ5EXBR9LIvsDgDq1dfHYFNWfi/maDYsyef48/n2CG/41fs9dfD3Q9JNaMpz2luAqqA5GFWOgPr0yyzPk35yqg+q2+d7v5bIKtjdJlZebqeWblOsWdPPsefz7FDfsev2DOryZpn3X0XMBc4MWnWiYQer6nMSlO+3N3/vZd1ioiI7JWm7j17B/CAmc0BXib0ju0KTAAws/sB3P3cqPwE4HIzuxP4DXAscB5wVtw6RUREMqVJk6a7P2JmHYAbCAMRLADGuPvKqEj3pPLLzWwM8EvCJSRrgSvd/Yl61JmL8vkWDoo9e/I5/nyOHfI7fsWeQU0+IpCIiEi+0oDtIiIiMSlpioiIxKSkmQVmZtmOQURE6k9JMwtcJ5KzQjsrItJQ6gjURMysCDgSOAX4iHALs7eBVe6+zcxMybRp6L1uembWzN0/yXYc+6PE917f/YZT0mwiZnY3cCqwDmgH9CRcQvMUcKe7L8tacDGZWQHhQDmvNn5m1hoYCZwJfAAsBZYAC9x9bTZji8vMCoFP8u29l9xgZm3cfUu249gXKGk2ATPrD7wKnAbMdffNZnYIcD7wHcLg8lcBE3NxL9DMhrj73KRpBYSNeM7Fm8zM/kBImksJOyzdCMnzdcJ7/kL2oqudmY1w95lJ0/ImgZpZN+DbwDHAO4SxnhcCb7j7B7l65JMYVz6934nMrB/h1olHE1q13gXmAzPcfVVUJiff/1ympNkEzOz7wMnuPjJ6XejulQnzbyEchX4+1458zOwwwoZuEeGWaw+4+z8T5hthkIyjgdejoQ1zRrTDMpswtOJr7l5lZgcBpwMXAGXATcDN5NhOgJl9hvC+bwP+CvzK3V9OmG/AAcBoYI67J9/tJ6uim8g/AbQEXgMGEsaF3gz8A7jD3d/JXoTpRTu1/ZJuBGGEuypV5dL3JBUz6wP8jXDHp5eBzxB2zosICfT/3D35tos5wcw6E36vf3P392spd4C7/7vpIgvUEahp/As41MxKAdy90swKzaxFNH8isJ1wJJprziIcITwLDAP+Ymavmtl3zaxbtPHoRDiS7pTFONM5CZjv7q9GCbO5u3/k7hPdfShwGSF59snBDeGphCODW4BiYLqZrTez282sOt6DgSlA8+yFmdZ1hLsQ/Ye7n+vugwn3yP0j8GXgVTP7SjYDrMV44KXo/f61mfX3oNLd3cyamVl3M/ta1OqSa64lnIL4krtf7+6nAF8F7iYkzyfN7PwsxlebG4D7gbfN7DEzGxP1CalhZt2Bq5KnNwUlzaYxg3Bnlr+Y2elmVhT9+HZCGC6QsAdbkc0g0+hL2GP9GXAh8H3CUIXnALPM7M+EcYH/5e6rsxZlevOBHmb2BQg3Doh2WFpG8x8DVrL7eMa5ophwlPAb4CvA54HfAV8ClprZG8Bkwnu/KmtRpjcAmO7u683sgKiF5V13/5m79wCeAy6OElCu9Ww+hjB+9f8CI4AFZva2mX3fzNpHTbXfBH7m7lXZDDSNHsA8d99iZgVmVuDuG9x9UtTiNQG40MxaZTnOVMoI25v/JpxOeRJYbma/MrPBUZkLgYvdvem3me6uRxM8CIPIP8KnzZw3EzaChwN3Ae8BB2Y7zqSYC4GvA9cnTW9POGK4HHgU+AQ4P9vxplmHFoSj5HWEwfxbpijzOnBZtmNNiqkAGANcmjS9OWGM5i8TWig+Ab6V7XjTrMP46L1tkzDtgOrPgJCM3gGGZTvWpLh7AH8n3ByiGWHnZTTwa8J5wU8IOzPvA9dkO94063BVFOtnkr47zaPn/YHlhFaArMebEGNXwo7sRdHrQkLT8nXRd6kKeJNwyuKqbMSoc5pNKBpY/suE9vrehKO4doSbav/G3SdnMbw6pTqHYGanAo8Drd19e3Yiq110VPlTQvP3DkJT8hRgK/Atwsa7b67GD6kv2TCz0cBUcvS9N7MhwJ8J97Yd7+5PJ83/DGFD2D6X4jeztoRLw1a4+/SE6S0JG/UhwKWE700bd9+RlUBrEZ1P/hOh+f4n7v67pPkDgXnAwTn23h9IOJjY6O6zk+a1IpwXv5Zw6iIr772SZiMzsxKgNHq5jXCkuYOQNFsTzmVu8lpOeGdLumvrot6EVe7uZnY7UObuo5o8wBiiZqmq6LKTEcBxhHOzgwlHc88RetBOzWKYe4iaKy3V+59QZjww3N1HN1lgMVX3yozO4/+c8J5XdwCaSjjSOQ1Y7u6nZy/S2lV3/vGEjnvR9D8Cxbn6vYdwmQlwK3A24Qj/GcL3fSDht/C6f3obxpyUqnevmU0i9EE4LisxKWk2HjO7hNDdfhAhOS4DVgMvAo97bp6HqpGQ8I3QJLXY3dcnzDfCubY17v5adqKsHzNrDhxC2HFpAXzk7tuyG9XeMbNRwHvuvjDLodQq6vB2AqGF5bOEc53vE5qXH/Tcvo0fsHvPWUJv4BnArZ5wm8JcEcXaLNpZbAEcQbjk6vOEncXlwIPAnxJ/z7nAzJoRrgVPmZiio/0pwP+6+5NNGlx1DEqajSNqin0b+B9CZ4JDCBuOUYS97Op7gy7KxWulkhL+NsK6rCY0bT7l7ouzGF6dzKxlYtNNXT/GXJIce76J3uuvEL7zLQnnLf/h7h9FG3EnNK1tymKYKSXF3orQ+3e6u29MKFMEnODuf81OlPVnCddVm9lB7v5RtmPaG2Z2AKFla1bWYsiDbUheMrMrgHM8XNaQPG8EodmkGPhsrm086kj4/QjJ85oo4Rd4jvUeNLN2hF6zfyXsUb9SnSwTk6eFi79Xew6NlFJH7IkX3PcD1rn7h9mKNZWoSfA+4D8IrRNrCC0V2wlNgw+6+9KobE4NrZci9tWEBL+T0O/gAXd/K3sR1i5KKL2AlZ6iV2ku7pxXqyv2XKJLThrPLqBNdMIdMyuKmgbxMMLL2YQf40nZCzGtrwNL3P1md9/s7m+5+z3ufhphBKNWhMtnOuZawoycQ7iIfgihGe1tM7vJzPq6e/XedjfgIcIOQS6pLfbqhFkde/vshZnWlYQObmPcvTPhu/Q/wBuETnB3WBg4gFxKmJHk2M8G7iT01jwJ+Hl17DnqMuCfwAQz+08z65J4DWn0vW9rZl+MklQuqTV2CB20zOxL1dvRbNGRZiOJjtamE5ozr6k+mrHdB09+hdDU+fPsRbonM/sOocv66e6+IGqOco9G+7FwYfE04GZ3fyiLoaZkZhMJ555uJFzIfRah00lvwsg0vwM6AD9w99bZijOVfI4dwMz+ATzp7nckTS8AjiUcyb3j7idnI77a5HPsAGY2i7AjXgh8jnDJyZOEXrRvRs3jFwPnufuw7EW6p3yKXUeajSA6Ef8+YWSLE4G1ZnZf1AUfCyOJnEM4Qf9o9iJN63FC89TVFgZ6rvAwKEAzAHd/F/gQKMlijClFCX4R4e4xG939DXe/nnDB9Oho3njCJSg/y1qgKeRz7FDTq3oB8F/VR2QWLqxv5u5VHoakuxgoMbNB2Yw1WT7HDjXD/v2b0BP8OMK1pvcRju5nAC+Y2XXA1YRhJXNG3sXuOXBB6776IFwjdSThx/Z3wnWBWwnnC98hXLuW9TiTYrbo8VXCSDlbCF/gIYSdrO6EJsQtQM9sx5tmHYqALtHzAkJPwsT5owg7BSXZjnVfij2Kb1j03f4Z0DnF/G7Rb6A427HuY7EfClwDjE4x72jCwAybo+9OTsWfb7GreTbDzKwT8A3CEFCbCJc2fAjMJDTVHkC4jGOauy/JUph1MrODCQnyc4QLvY+NZq0nJNUH3H18VoKrRcL1gb2BbZ4wiHnCvBsJzTy9sxfpnvI5dqjpZNWMMGDELYSmticII2G9S9iB/DLQ392PyVacqeRz7NWiyzHc3XdGrV3Apze9N7OfEs7XHp2tGNPJp9iVNDPMwoW3AwgjobxP6KxxBGG4vI3ADZ400kWuyPeEnxD/OMJ7XUkYPu8xwjVp26If5IXAWnf/S9aCTZLPsacS7XSdR+gIdBShZWIn4bzsrbn6G4C8jz1lD1kLo+nMA37v7jnXtA/5E7uSZgZFG7UthD2iGQnTugNDCXfT6E3oYDMva4Gmkc8JH9LGfzRh7MrVwC88d2+HNIk8jR1qhp7bkrjRi47eWhBGvhpIOHrOue9PPscOqeNPUaYFcAbwsOfQ7fvyMXYlzQwyswGEu05c6O6vpphfRBjo+VkPHTxyxj6Q8NPFX0I4V3UhoYPBWbkWfz7HXs3MfgPMiR4r3f3jFGXaeQ7eeDqfY4fY8R/sOXZNL+Rp7Nk+qbovPQijnzwPzAIOI6kTR1TmCsKYj1mPNymuAYTr0VLecYLQQaWc0DyV9Xj3Iv7muRp/PscexXcWoZPGh4ShIn9DGFC7lE/vaNIaeAo4Itvx7iux1xL/KUCfhPirh54bmO1494XYdaSZYWY2jHCvuh2EL8HzwAfuvjVqm78f2Onu52QxzD1EJ+L/Qhi44FzC9WjJd9W4gnALsKOaPsLa5XP8+Rw77HZt6c8JCeebhA3fYsK9WJ8nDBpwl7vn1M2y8zl2yO/48zV2Jc1GYGEUoB8CYwnjts4i3C/zBELnjgvc/c3sRZhavib8avkcf77GHl3f+F2grbt/L2H6AEKz8mmEc4MHA39w9/OzEWcq+Rw75Hf8eR27kmbjiXpEfolwzeNOwsXTj3luj1+Zlwm/Wj7Hn6+xWxgvt7O7v2VhiLN/e8KGxczOAB4GBrv761kKM6V8jh3yO/58jV1Js4lYjg1OXZd8TPiJ8jn+fI69WtT71DzcnupCQhNbq2zHFUc+xw75HX8+xK6kKXXKt4SfLJ/jz+fYq5nZOMKNnH+R7VjqK59jh/yOP1djV9IUkUZl4Y4aVfmY/PM5dsjv+HM1diVNERGRmHSXExERkZiUNEVERGJS0hQREYlJSVNERCQmJU0REZGYlDRFRERi+v/RXEweRzjHNQAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 504x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Transpile the circuit for the noisy basis gates\n",
|
|
"tcirc = transpile(circ, sim_vigo)\n",
|
|
"\n",
|
|
"# Execute noisy simulation and get counts\n",
|
|
"result_noise = sim_vigo.run(tcirc).result()\n",
|
|
"counts_noise = result_noise.get_counts(0)\n",
|
|
"plot_histogram(counts_noise,\n",
|
|
" title=\"Counts for 3-qubit GHZ state with device noise model\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"If transpilation is skipped noise from the device noise model will not be applied to gates in the circuit that are supported by the simulator, but not supported by the mimicked backend."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<h3>Version Information</h3><table><tr><th>Qiskit Software</th><th>Version</th></tr><tr><td><code>qiskit</code></td><td>0.22.0.dev0+397a639</td></tr><tr><td><code>qiskit-aer</code></td><td>0.10.4</td></tr><tr><th>System information</th></tr><tr><td>Python version</td><td>3.10.4</td></tr><tr><td>Python compiler</td><td>Clang 12.0.0 </td></tr><tr><td>Python build</td><td>main, Mar 31 2022 03:38:35</td></tr><tr><td>OS</td><td>Darwin</td></tr><tr><td>CPUs</td><td>2</td></tr><tr><td>Memory (Gb)</td><td>8.0</td></tr><tr><td colspan='2'>Thu Jul 14 10:20:15 2022 +08</td></tr></table>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div style='width: 100%; background-color:#d5d9e0;padding-left: 10px; padding-bottom: 10px; padding-right: 10px; padding-top: 5px'><h3>This code is a part of Qiskit</h3><p>© Copyright IBM 2017, 2022.</p><p>This code is licensed under the Apache License, Version 2.0. You may<br>obtain a copy of this license in the LICENSE.txt file in the root directory<br> of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.<p>Any modifications or derivative works of this code must retain this<br>copyright notice, and modified files need to carry a notice indicating<br>that they have been altered from the originals.</p></div>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import qiskit\n",
|
|
"qiskit.__version__\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"celltoolbar": "Tags",
|
|
"kernelspec": {
|
|
"display_name": "Python 3.10.4 ('fixissueenv')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.4"
|
|
},
|
|
"varInspector": {
|
|
"cols": {
|
|
"lenName": 16,
|
|
"lenType": 16,
|
|
"lenVar": 40
|
|
},
|
|
"kernels_config": {
|
|
"python": {
|
|
"delete_cmd_postfix": "",
|
|
"delete_cmd_prefix": "del ",
|
|
"library": "var_list.py",
|
|
"varRefreshCmd": "print(var_dic_list())"
|
|
},
|
|
"r": {
|
|
"delete_cmd_postfix": ") ",
|
|
"delete_cmd_prefix": "rm(",
|
|
"library": "var_list.r",
|
|
"varRefreshCmd": "cat(var_dic_list()) "
|
|
}
|
|
},
|
|
"types_to_exclude": [
|
|
"module",
|
|
"function",
|
|
"builtin_function_or_method",
|
|
"instance",
|
|
"_Feature"
|
|
],
|
|
"window_display": false
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "f53bee1cc8ff042b6860c611f7dc293c44dcfc3f45ad90e95286e8cf5f1fb6ad"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|