phonopy/doc/input-files.md

435 lines
18 KiB
Markdown

# Input files
## Setting file
Configuration of phonopy calculation can be written in a setting file though
it is recommended to use phonopy with {ref}`command_options`.
The setting file contains phonopy configurations whose details are found
at {ref}`setting_tags`. This file is passed to phonopy as the argument of
`--conf` option, e.g.,
```bash
% phonopy-load --config phonopy.conf [OPTIONS]
```
where the configuration filename is arbitrary.
## `phonopy_disp.yaml`
This is an output file after creating the displacements by `-d` option. This
contains the crystal structure information, primitive cell and supercell sizes,
and also the calculator interface. Therefore with this file, users will not need
to specify those crystal structure related tags when running phonopy.
`phonopy_disp.yaml` is a default file name that phonopy tries to find in the
current directory. Therefore, phonopy can be used as
```
% phonopy-load [OPTIONS]
```
and `FORCE_SETS` and `BORN` are also searched automatically in the current
directory. `FORCE_CONSTANTS` can be read `--readfc` option.
Other information such as forces (in `FORCE_SETS`), parameters for
non-analytical term correction (in `BORN`) can be also stored in
`phonopy_*.yaml` like file. If `phonopy_params.yaml` contains necessary
information to run expected phonon calculation, it is unnecessary to have
`FORCE_SETS` and `BORN` in the current directory when `phonopy_params.yaml` is
passed as the first argument of `phonopy-load`
```
% phonopy-load phonopy_params.yaml [OPTIONS]
```
can perform the phonon calculation. See more details in
{ref}`phonopy_load_command`.
## Structure file
Crystal structure is described by a file with specific format for each
calculator, though the default crystal structure is written in VASP POSCAR
format. See the detail of the calculator interfaces at
{ref}`calculator_interfaces`.
### VASP POSCAR like format
In the following, the VASP POSCAR format that phonopy can parse is explained.
The format is simple. The first line is for your comment, where you can write
anything you want. The second line is the ratio for lattice parameters. You can
multiply by this number. The third to fifth lines give the lattice parameters,
_a_, _b_, and _c_ for the respective lines. The sixth line contains the number
of atoms for each atomic species, which have to correspond to the atomic
positions in the order. The seventh line should be written as `Direct`. This
means that the atomic positions are represented in fractional (reduced)
coordinates. When you write chemical symbols in the first line, they are read
and those defined by the `ATOM_NAME` tag are overwritten.
(example_POSCAR1)=
#### Example of rutile-type silicon oxide crystal structure (VASP 4 style)
```
Si O
1.00000000000000
4.2266540199664249 0.0000000000000000 0.0000000000000000
0.0000000000000000 4.2266540199664249 0.0000000000000000
0.0000000000000000 0.0000000000000000 2.6888359272289208
2 4
Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.3067891334429594 0.3067891334429594 0.0000000000000000
0.6932108665570406 0.6932108665570406 0.0000000000000000
0.1932108665570406 0.8067891334429594 0.5000000000000000
0.8067891334429594 0.1932108665570406 0.5000000000000000
```
#### Example of rutile-type silicon oxide crystal structure (VASP 5 style)
The VASP 5.x style is also supported. Chemical symbols are inserted just before
the line of the numbers of atoms. The chemical symbols in this line overwrite
those defined by the `ATOM_NAME` tag and those defined by the first line of
`POSCAR`.
```
Stishovite
1.00000000000000
4.2266540199664249 0.0000000000000000 0.0000000000000000
0.0000000000000000 4.2266540199664249 0.0000000000000000
0.0000000000000000 0.0000000000000000 2.6888359272289208
Si O
2 4
Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.3067891334429594 0.3067891334429594 0.0000000000000000
0.6932108665570406 0.6932108665570406 0.0000000000000000
0.1932108665570406 0.8067891334429594 0.5000000000000000
0.8067891334429594 0.1932108665570406 0.5000000000000000
```
(file_forces)=
## Force file (`FORCE_SETS`)
Two types of `FORCE_SETS` formats are supported.
(file_forces_type_1)=
### Type 1
This format is the default format of phonopy and force constants can be
calculated by built-in force constants calculator of phonopy by finite
difference method, though external force constants calculator can be also used
to obtain force constants with this format by the fitting approach.
This file gives sets of forces in supercells with finite atomic displacements.
Each supercell involves one displaced atom. The first line is the number of
atoms in supercell. The second line gives number of calculated supercells with
displacements. Below the lines, sets of forces with displacements are written.
In each set, firstly the atom number in supercell is written. Secondary, the
atomic displacement in **Cartesian coordinates** is written. Below the
displacement line, atomic forces in **Cartesian coordinates** are successively
written. This is repeated for the set of displacements. Blank likes are simply
ignored.
In the following example, the third line is the displaced atom number that
corresponds to the atom number in the supercell created by phonopy. The fourth
line gives the displacements in **Cartesian coordinates**. The lines below, the
atomic forces in **Cartesian coordinates** are written. Once all the forces for
a supercell are written, the next set of forces are written. This routine is
repeated until the forces of all the displacements have been written.
#### Example
```
48
2
1
0.0050650623043761 0.0000000000000000 0.0086223630086415
-0.0347116200 -0.0000026500 -0.0679795200
0.0050392400 -0.0015711700 -0.0079514600
0.0027380900 -0.0017851900 -0.0069206400
... (continue until all the forces for this displacement have written)
25
0.0050650623043761 0.0000000000000000 0.0086223630086415
-0.0017134500 -0.0001539800 0.0017333400
0.0013248100 0.0001984300 -0.0001203700
-0.0001310200 -0.0007955600 0.0003889300
... (continue until all the forces for this displacement have written)
```
(file_forces_type_2)=
### Type 2
The format is compatible to `DFSET` of
[ALM code](https://alm.readthedocs.io/en/develop/format-dfset.html#format-of-dfset).
Each line has exactly 6 elements. The first three and second three elements give
displacement and force of an atom in a supercell, respectively. One set with the
number of lines of supercell atoms corresponds to one supercell calculation and
the number of supercell calculations are concatenated as many as the user likes.
This file is parsed to finally get displacements and forces to have the array
shapes of `displacements.shape = (num_supercells, num_atoms, 3)` and
`forces.shape = (num_supercells, num_atoms, 3)`.
Force constants can be calculated by the fitting approach and this force
constants calculation requires an external force constants calculator such as
[symfc](https://github.com/symfc/symfc) (`--symfc`) or
[ALM](https://alm.readthedocs.io/en/develop/index.html) (`--alm`
option). All the data are used for calculating force constants in the fitting
(usually least square fitting) by the force constants calculator.
#### Example
```
0.00834956 0.00506291 0.00215683 -0.01723508 -0.00418148 -0.00376513
-0.00494556 0.00866021 -0.00073630 0.00849148 -0.01091833 -0.00458456
-0.00403290 -0.00837741 0.00368169 0.00476247 0.00907379 -0.00210179
-0.00462319 0.00361350 -0.00809745 0.00996582 -0.00320343 0.01904460
0.00496785 -0.00596540 -0.00630352 -0.01882121 -0.00100787 0.01681980
...
```
(file_force_constants)=
## `FORCE_CONSTANTS` and `force_constants.hdf5`
If the force constants of a supercell are known, it is not necessary to prepared
`FORCES`. Phonopy has an interface to read and write `FORCE_CONSTANTS` or
`force_constants.hdf5`. To read and write these files are controlled by
{ref}`force constants tags <force_constants_tag>` and {ref}`fc_format_tag`. VASP
users can use {ref}`VASP DFPT interface <vasp_force_constants>` to create
`FORCE_CONSTANTS` from `vasprun.xml`. Quantum ESPRESSO users can use `q2r.x` to
create force constants file by followng the instraction shown at {ref}`qe_q2r`
Force constants are stored in either array shape of
- Compact format: `(n_patom, n_satom, 3, 3)`
- Full format: `(n_satom, n_satom, 3, 3)`
where `n_satom` and `n_patom` are the numbers of atoms in supercell and
primitive cell, respectively.
### Format of `FORCE_CONSTANTS`
First line contains the first two elements of the shape of the force constants
array, i.e., for `(n_satom, n_satom, 3, 3)`, the first and second numbers are
the same and are the number of atoms in the supercell, and for
`(n_patom, n_satom, 3, 3)`, they are the numbers of atoms in the primitive cell
and supercell. If the first line contains only one number, it is assumed same as
that of the former case.
Below second line, force constants between atoms are written by every four
lines. In first line of the four lines, anything can be written, i.e., just
ignored. Second to fourth lines of the four lines are for the second rank tensor
of force constant in Cartesian coordinates, i.e.:
```
xx xy xz
yx yy yz
zx zy zz
```
### Example
```
32 32
1 1
4.635786969900131 -0.000000000000000 -0.000000000000000
-0.000000000000000 4.635786969900130 -0.000000000000000
-0.000000000000000 -0.000000000000000 4.635786969900130
1 2
-0.246720998398056 -0.000000000000000 -0.000000000000000
-0.000000000000000 0.018256999881458 -0.000000000000000
-0.000000000000000 -0.000000000000000 0.018256999881458
...
1 32
0.002646999982813 0.018011999883049 -0.000000000000000
0.018011999883049 0.002646999982813 -0.000000000000000
-0.000000000000000 -0.000000000000000 0.035303999770773
2 1
-0.246720998398056 0.000000000000000 0.000000000000000
0.000000000000000 0.018256999881458 0.000000000000000
0.000000000000000 0.000000000000000 0.018256999881458
...
32 32
4.635786969900131 0.000000000000000 0.000000000000000
0.000000000000000 4.635786969900130 0.000000000000000
0.000000000000000 0.000000000000000 4.635786969900130
```
### Format of `force_constants.hdf5`
This is an alternative of `FORCE_CONSTANTS` but the data is stored in HDF5
format. See the detail of how to obtain this file, {ref}`fc_format_tag`.
The data are stored as follows. `p2s_map` is introduced at version 1.12.6. Force
constants data can be stored in the array shape of either
`(n_satom, n_satom, 3, 3)` or `(n_patom, n_satom, 3, 3)`. In the later case,
`p2s_map` is necessary for the consistency check and this gives the indices of
atoms in the primitive cell in supercell index system.
```
In [1]: import h5py
In [2]: f = h5py.File("force_constants.hdf5", 'r')
In [3]: list(f)
Out[3]: ['force_constants', 'p2s_map']
In [4]: f['force_constants'].shape
Out[4]: (2, 64, 3, 3)
In [5]: f['p2s_map'][:]
Out[5]: array([ 0, 32], dtype=int32)
```
(qpoints_file)=
## `QPOINTS` (optional)
Specific q-points are calculated using `QPOINTS = .TRUE.` tag and `QPOINTS`
file. The file format of `QPOINTS` is as follows. The first line gives the
number of q-points. Then the successive lines give q-points in reduced
coordinate of reciprocal space of the input unit cell.
### Example
```
512
-0.437500000000000 -0.437500000000000 -0.437500000000000
-0.312500000000000 -0.437500000000000 -0.437500000000000
-0.187500000000000 -0.437500000000000 -0.437500000000000
...
```
(born_file)=
## `BORN` (optional)
This file is used with the `--nac` option or `NAC` tag.
The formula implemented is refered to
{ref}`non_analytical_term_correction_theory`.
### Format
In the first line, unit conversion factor is given. In versions 1.10.4 or later,
the default value for each calculater can be used if characters than numerical
number are given. The default values for the calculaters are found at
{ref}`nac_default_value_interfaces`.
In the second line, dielectric constant {math}`\epsilon` is specifed in
Cartesian coordinates. The nine values correspond to the tensor elements of xx,
xy, xz, yx, yy, yz, zx, zy, and zz.
From the third line, Born effective charges {math}`Z` for the independent atoms
in the **primitive cell** have to be written in Cartesian coordinates. The
independent atoms can be found using the `-v` option. As shown below in the
Al2O3 example, the independent atoms are marked by `*` in front of atomic
positions:
```
% phonopy --pa R -v
_ __ | |__ ___ _ __ ___ _ __ _ _
| '_ \| '_ \ / _ \| '_ \ / _ \ | '_ \| | | |
| |_) | | | | (_) | | | | (_) || |_) | |_| |
| .__/|_| |_|\___/|_| |_|\___(_) .__/ \__, |
|_| |_| |___/
2.12.0
Python version 3.9.6
Spglib version 1.16.2
Crystal structure was read from "phonopy_disp.yaml".
Unit of length: angstrom
Settings:
Supercell: [2 2 1]
Primitive matrix:
[0.6666666666666666, -0.3333333333333333, -0.3333333333333333]
[0.3333333333333333, 0.3333333333333333, -0.6666666666666666]
[0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
Spacegroup: R-3c (167)
------------------------------ primitive cell ------------------------------
Lattice vectors:
a 2.387113172649497 1.378200432815288 4.337119797109073
b -2.387113172649497 1.378200432815288 4.337119797109073
c 0.000000000000000 -2.756400865630577 4.337119797109073
Atomic positions (fractional):
*1 Al 0.35209370789580 0.35209370789579 0.35209370789580 26.982
2 Al 0.64790629210421 0.64790629210420 0.64790629210421 26.982
3 Al 0.14790629210421 0.14790629210421 0.14790629210421 26.982
4 Al 0.85209370789579 0.85209370789580 0.85209370789579 26.982
*5 O 0.55580865378801 0.94419134621199 0.25000000000000 15.999
6 O 0.44419134621199 0.05580865378802 0.75000000000000 15.999
7 O 0.25000000000000 0.55580865378801 0.94419134621199 15.999
8 O 0.75000000000000 0.44419134621200 0.05580865378801 15.999
9 O 0.94419134621199 0.25000000000000 0.55580865378801 15.999
10 O 0.05580865378801 0.75000000000001 0.44419134621199 15.999
-------------------------------- unit cell ---------------------------------
Lattice vectors:
a 4.774226345298994 0.000000000000000 -0.000000000000000
b -2.387113172649497 4.134601298445865 0.000000000000000
c -0.000000000000000 0.000000000000000 13.011359391327222
Atomic positions (fractional):
*1 Al 0.33333333333334 0.66666666666666 0.01876037456246 26.982 > 1
2 Al 0.33333333333334 0.66666666666666 0.31457295877087 26.982 > 2
3 Al 0.00000000000000 0.00000000000000 0.14790629210421 26.982 > 3
4 Al 0.66666666666666 0.33333333333334 0.18542704122913 26.982 > 4
5 Al 0.00000000000000 0.00000000000000 0.35209370789579 26.982 > 1
6 Al 0.00000000000000 0.00000000000000 0.64790629210421 26.982 > 2
7 Al 0.66666666666666 0.33333333333334 0.48123962543754 26.982 > 3
8 Al 0.33333333333334 0.66666666666666 0.51876037456246 26.982 > 4
9 Al 0.66666666666666 0.33333333333334 0.68542704122913 26.982 > 1
10 Al 0.66666666666666 0.33333333333334 0.98123962543754 26.982 > 2
11 Al 0.33333333333334 0.66666666666666 0.81457295877087 26.982 > 3
12 Al 0.00000000000000 0.00000000000000 0.85209370789579 26.982 > 4
*13 O 0.30580865378801 0.00000000000000 0.25000000000000 15.999 > 5
14 O 0.36085801287865 0.33333333333334 0.08333333333334 15.999 > 6
15 O 0.00000000000000 0.30580865378801 0.25000000000000 15.999 > 7
16 O 0.66666666666666 0.02752467954532 0.08333333333334 15.999 > 8
17 O 0.69419134621199 0.69419134621199 0.25000000000000 15.999 > 9
18 O 0.97247532045468 0.63914198712135 0.08333333333334 15.999 > 10
19 O 0.97247532045468 0.33333333333334 0.58333333333334 15.999 > 5
20 O 0.02752467954532 0.66666666666666 0.41666666666666 15.999 > 6
21 O 0.66666666666666 0.63914198712135 0.58333333333334 15.999 > 7
22 O 0.33333333333334 0.36085801287865 0.41666666666666 15.999 > 8
23 O 0.36085801287865 0.02752467954532 0.58333333333334 15.999 > 9
24 O 0.63914198712135 0.97247532045468 0.41666666666666 15.999 > 10
25 O 0.63914198712135 0.66666666666666 0.91666666666666 15.999 > 5
26 O 0.69419134621199 0.00000000000000 0.75000000000000 15.999 > 6
27 O 0.33333333333334 0.97247532045468 0.91666666666666 15.999 > 7
28 O -0.00000000000000 0.69419134621199 0.75000000000000 15.999 > 8
29 O 0.02752467954532 0.36085801287865 0.91666666666666 15.999 > 9
30 O 0.30580865378801 0.30580865378801 0.75000000000000 15.999 > 10
-------------------------------- super cell --------------------------------
...
```
If VASP is used as the calculator for Born effective charge, and the hexagonal
unit cell is used for the calculation, the Born effective charge tensors of
atoms No. 1 and 13 have to be written in `BORN` file.
### Example
```
14.400
3.269 0.000 0.000 0.000 3.269 0.000 0.000 0.000 3.234
2.981 0.000 0.000 0.000 2.981 0.000 0.000 0.000 2.952
-1.935 0.000 0.000 0.000 -2.036 -0.261 0.000 -0.261 -1.968
```
or using the default NAC unit conversion factor (version 1.10.4 or later),
```
default value
3.269 0.000 0.000 0.000 3.269 0.000 0.000 0.000 3.234
2.981 0.000 0.000 0.000 2.981 0.000 0.000 0.000 2.952
-1.935 0.000 0.000 0.000 -2.036 -0.261 0.000 -0.261 -1.968
```