mirror of https://github.com/phonopy/phono3py.git
…
|
||
---|---|---|
.. | ||
FORCES_FC2 | ||
FORCES_FC3 | ||
README | ||
TEMPLATE | ||
TEMPLATE3 | ||
crystal.o | ||
outputs.tar.gz |
README
Si lattice thermal conductivity CRYSTAL output file is crystal.o. This is the default file name for the CRYSTAL interface, so the -c crystal.o parameter is not needed 1) Create displaced supercells (4x4x4 for 2nd order FC, 2x2x2 for 3rd order FC): phono3py --crystal --dim="2 2 2" --dim-fc2="4 4 4" -d Complete CRYSTAL inputs can be prepared manually or with the help of a template (TEMPLATE for FC2-supercells, TEMPLATE3 for FC3-supercells) 2) Run the supercell input with CRYSTAL Here the supercells have been pre-calculated (outputs.tar.gz). 3) Collect forces: phono3py --crystal --cf3 supercell-*o phono3py --crystal --cf2 supercell_fc2-*o Here the pre-calculated forces are available as FORCES_FC2 and FORCES_FC3 4) Create force constant files fc2.hdf5 and fc3.hdf5: phono3py --crystal --dim="2 2 2" --dim-fc2="4 4 4" --fc-symmetry 5) Thermal conductivity calculation: phono3py --crystal --fc3 --fc2 --dim="2 2 2" --dim-fc2="4 4 4" --mesh="20 20 20" --br --br -> Relaxation time approximation With 20x20x20 mesh, the lattice thermal conductivity at 300 K is 164 W m^-1 K^-1. Add --isotope for isotope scattering Check the effect of --nac for polar systems