phono3py/c/reciprocal_to_normal.c

317 lines
12 KiB
C

/* Copyright (C) 2015 Atsushi Togo */
/* All rights reserved. */
/* This file is part of phonopy. */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following conditions */
/* are met: */
/* * Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* * Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in */
/* the documentation and/or other materials provided with the */
/* distribution. */
/* * Neither the name of the phonopy project nor the names of its */
/* contributors may be used to endorse or promote products derived */
/* from this software without specific prior written permission. */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS */
/* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT */
/* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS */
/* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE */
/* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, */
/* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER */
/* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT */
/* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
/* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
#include "reciprocal_to_normal.h"
#include <stdint.h>
#ifdef MULTITHREADED_BLAS
#if defined(MKL_BLAS) || defined(SCIPY_MKL_H)
#include <mkl_cblas.h>
#else
#include <cblas.h>
#endif
#endif
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "lapack_wrapper.h"
#ifdef MEASURE_R2N
#include <time.h>
#include <unistd.h>
#endif
static double get_fc3_sum(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band);
#ifdef MULTITHREADED_BLAS
static double get_fc3_sum_blas(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band);
#endif
static double get_fc3_sum_blas_like(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band);
void reciprocal_to_normal_squared(
double *fc3_normal_squared, const int64_t (*g_pos)[4],
const int64_t num_g_pos, const lapack_complex_double *fc3_reciprocal,
const double *freqs0, const double *freqs1, const double *freqs2,
const lapack_complex_double *eigvecs0,
const lapack_complex_double *eigvecs1,
const lapack_complex_double *eigvecs2, const double *masses,
const int64_t *band_indices, const int64_t num_band,
const double cutoff_frequency, const int64_t openmp_per_triplets) {
int64_t i, j, ij, num_atom, use_multithreaded_blas;
double *inv_sqrt_masses;
lapack_complex_double *e0, *e1, *e2;
/* Inverse sqrt mass is multiplied with eigenvectors to reduce number
* of */
/* operations in get_fc3_sum. Three eigenvector matrices are looped
* by */
/* first loop leveraging contiguous memory layout of [e0, e1, e2].
*/
num_atom = num_band / 3;
inv_sqrt_masses = (double *)malloc(sizeof(double) * num_band);
for (i = 0; i < num_atom; i++) {
for (j = 0; j < 3; j++) {
inv_sqrt_masses[i * 3 + j] = 1.0 / sqrt(masses[i]);
}
}
/* Transpose eigenvectors for the better data alignment in memory. */
/* Memory space for three eigenvector matrices is allocated at once */
/* to make it contiguous. */
e0 = (lapack_complex_double *)malloc(sizeof(lapack_complex_double) * 3 *
num_band * num_band);
e1 = e0 + num_band * num_band;
e2 = e1 + num_band * num_band;
#ifdef _OPENMP
#pragma omp parallel for private(i, j) if (!openmp_per_triplets)
#endif
for (ij = 0; ij < num_band * num_band; ij++) {
i = ij / num_band;
j = ij % num_band;
e0[i * num_band + j] = lapack_make_complex_double(
lapack_complex_double_real(eigvecs0[j * num_band + i]) *
inv_sqrt_masses[j],
lapack_complex_double_imag(eigvecs0[j * num_band + i]) *
inv_sqrt_masses[j]);
e1[i * num_band + j] = lapack_make_complex_double(
lapack_complex_double_real(eigvecs1[j * num_band + i]) *
inv_sqrt_masses[j],
lapack_complex_double_imag(eigvecs1[j * num_band + i]) *
inv_sqrt_masses[j]);
e2[i * num_band + j] = lapack_make_complex_double(
lapack_complex_double_real(eigvecs2[j * num_band + i]) *
inv_sqrt_masses[j],
lapack_complex_double_imag(eigvecs2[j * num_band + i]) *
inv_sqrt_masses[j]);
}
free(inv_sqrt_masses);
inv_sqrt_masses = NULL;
#ifdef MEASURE_R2N
double loopTotalCPUTime, loopTotalWallTime;
time_t loopStartWallTime;
clock_t loopStartCPUTime;
#endif
#ifdef MEASURE_R2N
loopStartWallTime = time(NULL);
loopStartCPUTime = clock();
#endif
#ifdef MULTITHREADED_BLAS
if (openmp_per_triplets) {
use_multithreaded_blas = 0;
} else {
use_multithreaded_blas = 1;
}
#else
use_multithreaded_blas = 0;
#ifdef _OPENMP
#pragma omp parallel for if (!openmp_per_triplets)
#endif
#endif
for (i = 0; i < num_g_pos; i++) {
if (freqs0[band_indices[g_pos[i][0]]] > cutoff_frequency &&
freqs1[g_pos[i][1]] > cutoff_frequency &&
freqs2[g_pos[i][2]] > cutoff_frequency) {
#ifdef MULTITHREADED_BLAS
if (use_multithreaded_blas) {
fc3_normal_squared[g_pos[i][3]] =
get_fc3_sum_blas(e0 + band_indices[g_pos[i][0]] * num_band,
e1 + g_pos[i][1] * num_band,
e2 + g_pos[i][2] * num_band,
fc3_reciprocal, num_band) /
(freqs0[band_indices[g_pos[i][0]]] * freqs1[g_pos[i][1]] *
freqs2[g_pos[i][2]]);
} else {
#endif
fc3_normal_squared[g_pos[i][3]] =
get_fc3_sum_blas_like(
e0 + band_indices[g_pos[i][0]] * num_band,
e1 + g_pos[i][1] * num_band,
e2 + g_pos[i][2] * num_band, fc3_reciprocal, num_band) /
(freqs0[band_indices[g_pos[i][0]]] * freqs1[g_pos[i][1]] *
freqs2[g_pos[i][2]]);
#ifdef MULTITHREADED_BLAS
}
#endif
} else {
fc3_normal_squared[g_pos[i][3]] = 0;
}
}
#ifdef MEASURE_R2N
loopTotalCPUTime = (double)(clock() - loopStartCPUTime) / CLOCKS_PER_SEC;
loopTotalWallTime = difftime(time(NULL), loopStartWallTime);
printf(" %1.3fs (%1.3fs CPU)\n", loopTotalWallTime, loopTotalCPUTime);
#endif
free(e0);
e0 = NULL;
e1 = NULL;
e2 = NULL;
}
static double get_fc3_sum(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band) {
int64_t i, j, jk;
double sum_real, sum_imag;
lapack_complex_double e_012_fc3, fc3_i_e_12, *e_12_cache;
const lapack_complex_double *fc3_i;
e_12_cache = (lapack_complex_double *)malloc(sizeof(lapack_complex_double) *
num_band * num_band);
sum_real = 0;
sum_imag = 0;
for (i = 0; i < num_band; i++) {
for (j = 0; j < num_band; j++) {
e_12_cache[i * num_band + j] = phonoc_complex_prod(e1[i], e2[j]);
}
}
for (i = 0; i < num_band; i++) {
fc3_i = fc3_reciprocal + i * num_band * num_band;
for (jk = 0; jk < num_band * num_band; jk++) {
fc3_i_e_12 = phonoc_complex_prod(fc3_i[jk], e_12_cache[jk]);
e_012_fc3 = phonoc_complex_prod(e0[i], fc3_i_e_12);
sum_real += lapack_complex_double_real(e_012_fc3);
sum_imag += lapack_complex_double_imag(e_012_fc3);
}
}
free(e_12_cache);
e_12_cache = NULL;
return (sum_real * sum_real + sum_imag * sum_imag);
}
#ifdef MULTITHREADED_BLAS
static double get_fc3_sum_blas(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band) {
int64_t i;
lapack_complex_double *fc3_e12, *e_12, zero, one, retval;
e_12 = (lapack_complex_double *)malloc(sizeof(lapack_complex_double) *
num_band * num_band);
fc3_e12 = (lapack_complex_double *)malloc(sizeof(lapack_complex_double) *
num_band);
zero = lapack_make_complex_double(0, 0);
one = lapack_make_complex_double(1, 0);
for (i = 0; i < num_band; i++) {
cblas_zcopy(num_band, e2, 1, e_12 + i * num_band, 1);
cblas_zscal(num_band, e1 + i, e_12 + i * num_band, 1);
}
cblas_zgemv(CblasRowMajor, CblasNoTrans, num_band, num_band * num_band,
&one, fc3_reciprocal, num_band * num_band, e_12, 1, &zero,
fc3_e12, 1);
cblas_zdotu_sub(num_band, e0, 1, fc3_e12, 1, &retval);
free(e_12);
e_12 = NULL;
free(fc3_e12);
fc3_e12 = NULL;
return lapack_complex_double_real(retval) *
lapack_complex_double_real(retval) +
lapack_complex_double_imag(retval) *
lapack_complex_double_imag(retval);
}
#endif
static double get_fc3_sum_blas_like(const lapack_complex_double *e0,
const lapack_complex_double *e1,
const lapack_complex_double *e2,
const lapack_complex_double *fc3_reciprocal,
const int64_t num_band) {
int64_t i, j;
double sum_real, sum_imag, retval_real, retval_imag;
lapack_complex_double *e_12, fc3_e_12, fc3_e_012;
e_12 = (lapack_complex_double *)malloc(sizeof(lapack_complex_double) *
num_band * num_band);
for (i = 0; i < num_band; i++) {
memcpy(e_12 + i * num_band, e2, 16 * num_band);
for (j = 0; j < num_band; j++) {
e_12[i * num_band + j] =
phonoc_complex_prod(e1[i], e_12[i * num_band + j]);
}
}
retval_real = 0;
retval_imag = 0;
for (i = 0; i < num_band; i++) {
sum_real = 0;
sum_imag = 0;
for (j = 0; j < num_band * num_band; j++) {
fc3_e_12 = phonoc_complex_prod(
fc3_reciprocal[i * num_band * num_band + j], e_12[j]);
sum_real += lapack_complex_double_real(fc3_e_12);
sum_imag += lapack_complex_double_imag(fc3_e_12);
}
fc3_e_012 = phonoc_complex_prod(
e0[i], lapack_make_complex_double(sum_real, sum_imag));
retval_real += lapack_complex_double_real(fc3_e_012);
retval_imag += lapack_complex_double_imag(fc3_e_012);
}
free(e_12);
e_12 = NULL;
return retval_real * retval_real + retval_imag * retval_imag;
}