phono3py/c/real_self_energy.c

229 lines
9.2 KiB
C

/* Copyright (C) 2015 Atsushi Togo */
/* All rights reserved. */
/* This file is part of phonopy. */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following conditions */
/* are met: */
/* * Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* * Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in */
/* the documentation and/or other materials provided with the */
/* distribution. */
/* * Neither the name of the phonopy project nor the names of its */
/* contributors may be used to endorse or promote products derived */
/* from this software without specific prior written permission. */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS */
/* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT */
/* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS */
/* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE */
/* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, */
/* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER */
/* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT */
/* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
/* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
#include "real_self_energy.h"
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include "funcs.h"
#include "phonoc_array.h"
#include "real_to_reciprocal.h"
static double get_real_self_energy_at_band(
const int64_t band_index, const Darray *fc3_normal_squared,
const double fpoint, const double *frequencies,
const int64_t (*triplets)[3], const int64_t *triplet_weights,
const double epsilon, const double temperature,
const double unit_conversion_factor, const double cutoff_frequency);
static double sum_real_self_energy_at_band(
const int64_t num_band, const double *fc3_normal_squared,
const double fpoint, const double *freqs1, const double *freqs2,
const double epsilon, const double temperature,
const double cutoff_frequency);
static double sum_real_self_energy_at_band_0K(
const int64_t num_band, const double *fc3_normal_squared,
const double fpoint, const double *freqs1, const double *freqs2,
const double epsilon, const double cutoff_frequency);
void rse_get_real_self_energy_at_bands(
double *real_self_energy, const Darray *fc3_normal_squared,
const int64_t *band_indices, const double *frequencies,
const int64_t (*triplets)[3], const int64_t *triplet_weights,
const double epsilon, const double temperature,
const double unit_conversion_factor, const double cutoff_frequency) {
int64_t i, num_band0, num_band, gp0;
double fpoint;
num_band0 = fc3_normal_squared->dims[1];
num_band = fc3_normal_squared->dims[2];
gp0 = triplets[0][0];
/* num_band0 and num_band_indices have to be same. */
for (i = 0; i < num_band0; i++) {
fpoint = frequencies[gp0 * num_band + band_indices[i]];
if (fpoint < cutoff_frequency) {
real_self_energy[i] = 0;
} else {
real_self_energy[i] = get_real_self_energy_at_band(
i, fc3_normal_squared, fpoint, frequencies, triplets,
triplet_weights, epsilon, temperature, unit_conversion_factor,
cutoff_frequency);
}
}
}
void rse_get_real_self_energy_at_frequency_point(
double *real_self_energy, const double frequency_point,
const Darray *fc3_normal_squared, const int64_t *band_indices,
const double *frequencies, const int64_t (*triplets)[3],
const int64_t *triplet_weights, const double epsilon,
const double temperature, const double unit_conversion_factor,
const double cutoff_frequency) {
int64_t i, num_band0;
num_band0 = fc3_normal_squared->dims[1];
/* num_band0 and num_band_indices have to be same. */
for (i = 0; i < num_band0; i++) {
if (frequency_point < cutoff_frequency) {
real_self_energy[i] = 0;
} else {
real_self_energy[i] = get_real_self_energy_at_band(
i, fc3_normal_squared, frequency_point, frequencies, triplets,
triplet_weights, epsilon, temperature, unit_conversion_factor,
cutoff_frequency);
}
}
}
static double get_real_self_energy_at_band(
const int64_t band_index, const Darray *fc3_normal_squared,
const double fpoint, const double *frequencies,
const int64_t (*triplets)[3], const int64_t *triplet_weights,
const double epsilon, const double temperature,
const double unit_conversion_factor, const double cutoff_frequency) {
int64_t i, num_triplets, num_band0, num_band, gp1, gp2;
double shift;
num_triplets = fc3_normal_squared->dims[0];
num_band0 = fc3_normal_squared->dims[1];
num_band = fc3_normal_squared->dims[2];
shift = 0;
#ifdef _OPENMP
#pragma omp parallel for private(gp1, gp2) reduction(+ : shift)
#endif
for (i = 0; i < num_triplets; i++) {
gp1 = triplets[i][1];
gp2 = triplets[i][2];
if (temperature > 0) {
shift += sum_real_self_energy_at_band(
num_band,
fc3_normal_squared->data +
i * num_band0 * num_band * num_band +
band_index * num_band * num_band,
fpoint, frequencies + gp1 * num_band,
frequencies + gp2 * num_band, epsilon, temperature,
cutoff_frequency) *
triplet_weights[i] * unit_conversion_factor;
} else {
shift +=
sum_real_self_energy_at_band_0K(
num_band,
fc3_normal_squared->data +
i * num_band0 * num_band * num_band +
band_index * num_band * num_band,
fpoint, frequencies + gp1 * num_band,
frequencies + gp2 * num_band, epsilon, cutoff_frequency) *
triplet_weights[i] * unit_conversion_factor;
}
}
return shift;
}
static double sum_real_self_energy_at_band(
const int64_t num_band, const double *fc3_normal_squared,
const double fpoint, const double *freqs1, const double *freqs2,
const double epsilon, const double temperature,
const double cutoff_frequency) {
int64_t i, j;
double n1, n2, f1, f2, f3, f4, shift;
/* double sum; */
shift = 0;
for (i = 0; i < num_band; i++) {
if (freqs1[i] > cutoff_frequency) {
n1 = funcs_bose_einstein(freqs1[i], temperature);
for (j = 0; j < num_band; j++) {
if (freqs2[j] > cutoff_frequency) {
n2 = funcs_bose_einstein(freqs2[j], temperature);
f1 = fpoint + freqs1[i] + freqs2[j];
f2 = fpoint - freqs1[i] - freqs2[j];
f3 = fpoint - freqs1[i] + freqs2[j];
f4 = fpoint + freqs1[i] - freqs2[j];
/* sum = 0;
* if (fabs(f1) > epsilon) {
* sum -= (n1 + n2 + 1) / f1;
* }
* if (fabs(f2) > epsilon) {
* sum += (n1 + n2 + 1) / f2;
* }
* if (fabs(f3) > epsilon) {
* sum -= (n1 - n2) / f3;
* }
* if (fabs(f4) > epsilon) {
* sum += (n1 - n2) / f4;
* }
* shift += sum * fc3_normal_squared[i * num_band + j]; */
shift +=
(-(n1 + n2 + 1) * f1 / (f1 * f1 + epsilon * epsilon) +
(n1 + n2 + 1) * f2 / (f2 * f2 + epsilon * epsilon) -
(n1 - n2) * f3 / (f3 * f3 + epsilon * epsilon) +
(n1 - n2) * f4 / (f4 * f4 + epsilon * epsilon)) *
fc3_normal_squared[i * num_band + j];
}
}
}
}
return shift;
}
static double sum_real_self_energy_at_band_0K(
const int64_t num_band, const double *fc3_normal_squared,
const double fpoint, const double *freqs1, const double *freqs2,
const double epsilon, const double cutoff_frequency) {
int64_t i, j;
double f1, f2, shift;
shift = 0;
for (i = 0; i < num_band; i++) {
if (freqs1[i] > cutoff_frequency) {
for (j = 0; j < num_band; j++) {
if (freqs2[j] > cutoff_frequency) {
f1 = fpoint + freqs1[i] + freqs2[j];
f2 = fpoint - freqs1[i] - freqs2[j];
shift += (-1 * f1 / (f1 * f1 + epsilon * epsilon) +
1 * f2 / (f2 * f2 + epsilon * epsilon)) *
fc3_normal_squared[i * num_band + j];
}
}
}
}
return shift;
}