openfold/tests/test_multimer_datamodule.py

89 lines
3.7 KiB
Python

# Copyright 2021 AlQuraishi Laboratory
# Dingquan Yu @ EMBL-Hamburg Kosinski group
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import torch
import unittest
from openfold.utils.tensor_utils import tensor_tree_map
from openfold.config import model_config
from openfold.data.data_modules import OpenFoldMultimerDataModule
from openfold.model.model import AlphaFold
from openfold.utils.loss import AlphaFoldLoss
from openfold.utils.multi_chain_permutation import multi_chain_permutation_align
from tests.config import consts
import logging
logger = logging.getLogger(__name__)
@unittest.skipIf(not consts.is_multimer or consts.template_mmcif_dir is None, "Template mmcif dir required.")
class TestMultimerDataModule(unittest.TestCase):
def setUp(self):
"""
Set up model config
use model_1_multimer_v3 for now
"""
self.config = model_config(
consts.model,
train=True,
low_prec=True)
self.data_module = OpenFoldMultimerDataModule(
config=self.config.data,
batch_seed=42,
train_epoch_len=100,
template_mmcif_dir= consts.template_mmcif_dir,
template_release_dates_cache_path=os.path.join(os.getcwd(),"tests/test_data/mmcif_cache.json"),
max_template_date="2500-01-01",
train_data_dir=os.path.join(os.getcwd(),"tests/test_data/mmcifs"),
train_alignment_dir=os.path.join(os.getcwd(),"tests/test_data/alignments/"),
kalign_binary_path=shutil.which('kalign'),
train_mmcif_data_cache_path=os.path.join(os.getcwd(),
"tests/test_data/train_mmcifs_cache.json"),
train_chain_data_cache_path=os.path.join(os.getcwd(),
"tests/test_data/train_chain_data_cache.json"),
)
# setup model
self.c = model_config(consts.model, train=True)
self.c.loss.masked_msa.num_classes = 22 # somehow need overwrite this part in multimer loss config
self.c.model.evoformer_stack.no_blocks = 4 # no need to go overboard here
self.c.model.evoformer_stack.blocks_per_ckpt = None # don't want to set up
# deepspeed for this test
self.model = AlphaFold(self.c)
self.loss = AlphaFoldLoss(self.c.loss)
def testPrepareData(self):
self.data_module.prepare_data()
self.data_module.setup()
train_dataset = self.data_module.train_dataset
all_chain_features = train_dataset[1]
add_batch_size_dimension = lambda t: (
t.unsqueeze(0)
)
all_chain_features = tensor_tree_map(add_batch_size_dimension, all_chain_features)
with torch.no_grad():
ground_truth = all_chain_features.pop('gt_features', None)
# Run the model
out = self.model(all_chain_features)
# Remove the recycling dimension
all_chain_features = tensor_tree_map(lambda t: t[..., -1], all_chain_features)
all_chain_features = multi_chain_permutation_align(out=out,
features=all_chain_features,
ground_truth=ground_truth)
self.loss(out, all_chain_features)