openfold/tests/config.py

67 lines
1.8 KiB
Python

import ml_collections as mlc
monomer_consts = mlc.ConfigDict(
{
"model": "model_1_ptm", # monomer:model_1_ptm, multimer: model_1_multimer_v3
"is_multimer": False, # monomer: False, multimer: True
"chunk_size": 4,
"batch_size": 2,
"n_res": 22,
"n_seq": 13,
"n_templ": 3,
"n_extra": 17,
"n_heads_extra_msa": 8,
"eps": 5e-4,
# For compatibility with DeepMind's pretrained weights, it's easiest for
# everyone if these take their real values.
"c_m": 256,
"c_z": 128,
"c_s": 384,
"c_t": 64,
"c_e": 64,
"msa_logits": 23, # monomer: 23, multimer: 22
"template_mmcif_dir": None # Set for test_multimer_datamodule
}
)
multimer_consts = mlc.ConfigDict(
{
"model": "model_1_multimer_v3", # monomer:model_1_ptm, multimer: model_1_multimer_v3
"is_multimer": True, # monomer: False, multimer: True
"chunk_size": 4,
"batch_size": 2,
"n_res": 22,
"n_seq": 13,
"n_templ": 3,
"n_extra": 17,
"n_heads_extra_msa": 8,
"eps": 5e-4,
# For compatibility with DeepMind's pretrained weights, it's easiest for
# everyone if these take their real values.
"c_m": 256,
"c_z": 128,
"c_s": 384,
"c_t": 64,
"c_e": 64,
"msa_logits": 22, # monomer: 23, multimer: 22
"template_mmcif_dir": None # Set for test_multimer_datamodule
}
)
consts = monomer_consts
config = mlc.ConfigDict(
{
"data": {
"common": {
"masked_msa": {
"profile_prob": 0.1,
"same_prob": 0.1,
"uniform_prob": 0.1,
},
}
}
}
)