openfold/tests/compare_utils.py

140 lines
4.3 KiB
Python

import os
import importlib
import pkgutil
import sys
import unittest
import numpy as np
import torch
from openfold.config import model_config
from openfold.model.model import AlphaFold
from openfold.utils.import_weights import import_jax_weights_
from tests.config import consts
# Give JAX some GPU memory discipline
# (by default it hogs 90% of GPU memory. This disables that behavior and also
# forces it to proactively free memory that it allocates)
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
os.environ["JAX_PLATFORM_NAME"] = "gpu"
def skip_unless_ds4s_installed():
deepspeed_is_installed = importlib.util.find_spec("deepspeed") is not None
ds4s_is_installed = deepspeed_is_installed and importlib.util.find_spec(
"deepspeed.ops.deepspeed4science") is not None
return unittest.skipUnless(ds4s_is_installed, "Requires DeepSpeed with version ≥ 0.10.4")
def skip_unless_flash_attn_installed():
fa_is_installed = importlib.util.find_spec("flash_attn") is not None
return unittest.skipUnless(fa_is_installed, "Requires Flash Attention")
def alphafold_is_installed():
return importlib.util.find_spec("alphafold") is not None
def skip_unless_alphafold_installed():
return unittest.skipUnless(alphafold_is_installed(), "Requires AlphaFold")
def import_alphafold():
"""
If AlphaFold is installed using the provided setuptools script, this
is necessary to expose all of AlphaFold's precious insides
"""
if "alphafold" in sys.modules:
return sys.modules["alphafold"]
module = importlib.import_module("alphafold")
# Forcefully import alphafold's submodules
submodules = pkgutil.walk_packages(module.__path__, prefix=("alphafold."))
for submodule_info in submodules:
importlib.import_module(submodule_info.name)
sys.modules["alphafold"] = module
globals()["alphafold"] = module
return module
def get_alphafold_config():
config = alphafold.model.config.model_config(consts.model) # noqa
config.model.global_config.deterministic = True
return config
dir_path = os.path.dirname(os.path.realpath(__file__))
_param_path = os.path.join(dir_path, "..", f"openfold/resources/params/params_{consts.model}.npz")
_model = None
def get_global_pretrained_openfold():
global _model
if _model is None:
_model = AlphaFold(model_config(consts.model))
_model = _model.eval()
if not os.path.exists(_param_path):
raise FileNotFoundError(
"""Cannot load pretrained parameters. Make sure to run the
installation script before running tests."""
)
import_jax_weights_(_model, _param_path, version=consts.model)
_model = _model.cuda()
return _model
_orig_weights = None
def _get_orig_weights():
global _orig_weights
if _orig_weights is None:
_orig_weights = np.load(_param_path)
return _orig_weights
def _remove_key_prefix(d, prefix):
for k, v in list(d.items()):
if k.startswith(prefix):
d.pop(k)
d[k[len(prefix):]] = v
def fetch_alphafold_module_weights(weight_path):
orig_weights = _get_orig_weights()
params = {k: v for k, v in orig_weights.items() if weight_path in k}
if "/" in weight_path:
spl = weight_path.split("/")
spl = spl if len(spl[-1]) != 0 else spl[:-1]
prefix = "/".join(spl[:-1]) + "/"
_remove_key_prefix(params, prefix)
try:
params = alphafold.model.utils.flat_params_to_haiku(params) # noqa
except:
raise ImportError(
"Make sure to call import_alphafold before running this function"
)
return params
def _assert_abs_diff_small_base(compare_func, expected, actual, eps):
# Helper function for comparing absolute differences of two torch tensors.
abs_diff = torch.abs(expected - actual)
err = compare_func(abs_diff)
zero_tensor = torch.tensor(0, dtype=err.dtype)
rtol = 1.6e-2 if err.dtype == torch.bfloat16 else 1.3e-6
torch.testing.assert_close(err, zero_tensor, atol=eps, rtol=rtol)
def assert_max_abs_diff_small(expected, actual, eps):
_assert_abs_diff_small_base(torch.max, expected, actual, eps)
def assert_mean_abs_diff_small(expected, actual, eps):
_assert_abs_diff_small_base(torch.mean, expected, actual, eps)