abinit/tests/wannier90/Refs/t13.abo

666 lines
33 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h17 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/wannier90_t13/t13.abi
- output file -> t13.abo
- root for input files -> t13i
- root for output files -> t13o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 36 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 2
- mband = 5 mffmem = 1 mkmem = 3
mpw = 1807 nfft = 46656 nkpt = 3
================================================================================
P This job should need less than 15.173 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.416 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 36 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 8
mpw = 1807 nfft = 46656 nkpt = 8
================================================================================
P This job should need less than 9.966 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.884 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.2500000000E+01 1.2500000000E+01 1.2500000000E+01 Bohr
amu 3.99480000E+01
diemac 4.00000000E+00
ecut 1.80000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
- fftalg 512
getden1 0
getden2 -1
getwfk1 0
getwfk2 -1
iscf1 7
iscf2 -2
istwfk1 1 1 1
istwfk2 1 1 1 1 1 1 1 1
ixc 14
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt1 1
kptopt2 3
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.76776695E+01
P mkmem1 3
P mkmem2 8
natom 1
nband1 5
nband2 4
nbdbuf1 0
nbdbuf2 2
ndtset 2
ngfft 36 36 36
nkpt1 3
nkpt2 8
nstep1 100
nstep2 0
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000
prtwant1 0
prtwant2 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-12
tolvrs2 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-10
typat 1
vdw_nfrag1 1
vdw_nfrag2 -1
vdw_supercell1 0 0 0
vdw_supercell2 1 1 1
vdw_xc1 0
vdw_xc2 14
wtk1 0.12500 0.50000 0.37500
wtk2 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
znucl 18.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 3, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1807, }
cutoff_energies: {ecut: 18.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: revPBE functional - ixc=14
Citation for XC functional:
Zhang and Yang, PRL 80, 890 (1998)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 6.2500000 6.2500000 G(1)= -0.0800000 0.0800000 0.0800000
R(2)= 6.2500000 0.0000000 6.2500000 G(2)= 0.0800000 -0.0800000 0.0800000
R(3)= 6.2500000 6.2500000 0.0000000 G(3)= 0.0800000 0.0800000 -0.0800000
Unit cell volume ucvol= 4.8828125E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 18.000 => boxcut(ratio)= 2.13258
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/18ar.revpbe
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/18ar.revpbe
- Ar APE 1.0 : Troullier-Martins scheme, Perdew-Wang LDA, llocal= 1
- 18.00000 8.00000 20100419 znucl, zion, pspdat
6 7 1 1 800 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.018841 amesh (Hamman grid)
pspatm : epsatm= 16.71504544
--- l ekb(1:nproj) -->
0 1.363104
pspatm: atomic psp has been read and splines computed
1.33720364E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 1776.375 1776.338
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -21.250238328552 -2.125E+01 7.206E-03 6.129E+01
ETOT 2 -21.251708571344 -1.470E-03 3.538E-07 1.264E+00
ETOT 3 -21.251766174345 -5.760E-05 1.495E-06 1.096E-01
ETOT 4 -21.251770031237 -3.857E-06 1.053E-07 1.157E-02
ETOT 5 -21.251770549236 -5.180E-07 1.705E-08 7.217E-04
ETOT 6 -21.251770615830 -6.659E-08 1.281E-09 2.160E-05
ETOT 7 -21.251770616897 -1.067E-09 9.526E-12 3.687E-07
ETOT 8 -21.251770616936 -3.914E-11 6.456E-13 1.301E-09
ETOT 9 -21.251770616935 1.727E-12 3.001E-15 1.165E-11
ETOT 10 -21.251770616936 -1.101E-12 1.940E-17 4.834E-13
At SCF step 10 vres2 = 4.83E-13 < tolvrs= 1.00E-12 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.45569951E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.45569951E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.45569951E-06 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 6.2500000, 6.2500000, ]
- [ 6.2500000, 0.0000000, 6.2500000, ]
- [ 6.2500000, 6.2500000, 0.0000000, ]
lattice_lengths: [ 8.83883, 8.83883, 8.83883, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.8828125E+02
convergence: {deltae: -1.101E-12, res2: 4.834E-13, residm: 1.940E-17, diffor: null, }
etotal : -2.12517706E+01
entropy : 0.00000000E+00
fermie : -3.04472063E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.45569951E-06, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.45569951E-06, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.45569951E-06, ]
pressure_GPa: 4.2828E-02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ar]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 6.11354415
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 63.674E-19; max= 19.396E-18
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 12.500000000000 12.500000000000 12.500000000000 bohr
= 6.614715107375 6.614715107375 6.614715107375 angstroms
prteigrs : about to open file t13o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.30447 Average Vxc (hartree)= -0.16347
Eigenvalues (hartree) for nkpt= 3 k points:
kpt# 1, nband= 5, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.80993 -0.30447 -0.30447 -0.30447 0.00891
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 7.52321595108558E+00
hartree : 7.39017304188942E+00
xc : -3.65792934945617E+00
Ewald energy : -1.17372469097313E+01
psp_core : 2.73859304494880E-01
local_psp : -2.19127127997245E+01
non_local_psp : 8.68870144506282E-01
total_energy : -2.12517706169359E+01
total_energy_eV : -5.78290087962111E+02
band_energy : -3.46710791276309E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.45569951E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.45569951E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.45569951E-06 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.2828E-02 GPa]
- sigma(1 1)= -4.28281511E-02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.28281511E-02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.28281511E-02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 8, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1807, }
cutoff_energies: {ecut: 18.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: revPBE functional - ixc=14
Citation for XC functional:
Zhang and Yang, PRL 80, 890 (1998)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 6.2500000 6.2500000 G(1)= -0.0800000 0.0800000 0.0800000
R(2)= 6.2500000 0.0000000 6.2500000 G(2)= 0.0800000 -0.0800000 0.0800000
R(3)= 6.2500000 6.2500000 0.0000000 G(3)= 0.0800000 0.0800000 -0.0800000
Unit cell volume ucvol= 4.8828125E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 18.000 => boxcut(ratio)= 2.13258
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t13o_DS1_WFK
================================================================================
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 6.2500000, 6.2500000, ]
- [ 6.2500000, 0.0000000, 6.2500000, ]
- [ 6.2500000, 6.2500000, 0.0000000, ]
lattice_lengths: [ 8.83883, 8.83883, 8.83883, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.8828125E+02
convergence: {deltae: null, res2: null, residm: null, diffor: null, }
etotal : -2.12517706E+01
entropy : 0.00000000E+00
fermie : -3.04472063E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ar]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
---------------------------------------------------------------
Calculation of overlap and call to wannier90 library
to obtain maximally localized wannier functions
- w90.win is a mandatory secondary input
- w90.wout is the output for the library
- w90random.amn contains random projections
- w90.amn contains projections
- w90.mmn contains the overlap
- w90.eig contains the eigenvalues
---------------------------------------------------------------
mlwfovlp : mlwfovlp_setup done -
- see w90.wout for details.
Writing top of the overlap matrix: M_mn(ikb,ik)
m=n=1:3, ikb=1, ik=1
; ( 0.931373 -0.000000 , 0.346217 -0.000000 , -0.000000 -0.000000 , )
; ( -0.083473 -0.000004 , 0.199780 0.000009 , 0.911365 -0.000003 , )
; ( -0.113674 -0.000003 , 0.272061 0.000006 , -0.140360 0.000005 , )
Writing bottom of the overlap matrix: M_mn(ikb,ik)
m=n=num_bands-2:num_bands, ikb=nntot, ik=nkpt
; ( -0.564431 -0.000000 , 0.715306 -0.000000 , -0.163174 0.000001 , )
; ( -0.114797 0.000000 , 0.133820 0.000001 , 0.921675 0.000000 , )
; ( -0.693868 0.000000 , -0.473275 -0.000000 , -0.049575 -0.000001 , )
Writing top of the initial projections matrix: A_mn(ik)
m=1:3, n=1:3, ik=1
; ( 0.155744 0.093686 , 0.216971 0.250192 , 0.252459 0.234924 , )
; ( 0.158021 0.168146 , 0.251976 0.200257 , 0.227885 0.020724 , )
; ( 0.133966 0.051926 , 0.105189 0.255798 , 0.232946 0.042728 , )
Writing bottom of the initial projections matrix: A_mn(ik)
m=num_bands-2:num_bands, n=nwan-2:nwan, ik=nkpt
; ( 0.029706 0.127784 , 0.200276 0.208055 , 0.129656 0.280727 , )
; ( 0.205530 0.158666 , 0.212015 0.402459 , 0.246136 0.039495 , )
; ( 0.133552 0.150936 , 0.151632 0.183667 , 0.164708 0.190351 , )
mlwfovlp : mlwfovlp_run completed -
- see w90.wout for details.
vdw_xc : 14
van der Waals correction(Ha): -0.024986
van der Waals correction(eV): -0.679904
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 6.11354415
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 82.928E-19; max= 89.242E-19
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 12.500000000000 12.500000000000 12.500000000000 bohr
= 6.614715107375 6.614715107375 6.614715107375 angstroms
prteigrs : about to open file t13o_DS2_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 4, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.80993 -0.30447 -0.30447 -0.30447
prteigrs : prtvol=0 or 1, do not print more k-points.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.2500000000E+01 1.2500000000E+01 1.2500000000E+01 Bohr
amu 3.99480000E+01
diemac 4.00000000E+00
ecut 1.80000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
etotal1 -2.1251770617E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
getden1 0
getden2 -1
getwfk1 0
getwfk2 -1
iscf1 7
iscf2 -2
istwfk1 1 1 1
istwfk2 1 1 1 1 1 1 1 1
ixc 14
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt1 1
kptopt2 3
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.76776695E+01
P mkmem1 3
P mkmem2 8
natom 1
nband1 5
nband2 4
nbdbuf1 0
nbdbuf2 2
ndtset 2
ngfft 36 36 36
nkpt1 3
nkpt2 8
nstep1 100
nstep2 0
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000
prtwant1 0
prtwant2 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 225
strten1 -1.4556995140E-06 -1.4556995140E-06 -1.4556995140E-06
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-12
tolvrs2 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-10
typat 1
vdw_nfrag1 1
vdw_nfrag2 -1
vdw_supercell1 0 0 0
vdw_supercell2 1 1 1
vdw_xc1 0
vdw_xc2 14
wtk1 0.12500 0.50000 0.37500
wtk2 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
znucl 18.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 1.2 wall= 1.2
================================================================================
Calculation completed.
.Delivered 4 WARNINGs and 11 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.2 wall= 1.2