abinit/tests/wannier90/Refs/t02.abo

633 lines
35 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h17 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/wannier90_t02/t02.abi
- output file -> t02.abo
- root for input files -> t02i
- root for output files -> t02o
Symmetries : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 26 mffmem = 1 mkmem = 8
mpw = 464 nfft = 13824 nkpt = 8
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 32 nfftf = 32768
================================================================================
P This job should need less than 12.129 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.475 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97200000E+01 7.49216000E+01
diemac 1.00000000E+01
ecut 1.00000000E+01 Hartree
- fftalg 512
istwfk 1 1 1 1 1 1 1 1
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 0
P mkmem 8
natom 2
nband 26
ngfft 24 24 24
ngfftdg 32 32 32
nkpt 8
nsym 24
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
pawecutdg 2.00000000E+01 Hartree
prtwant 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolwfr 1.00000000E-10
typat 1 2
useylm 1
wtk 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
w90iniprj 2
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 8, mband: 26, nsppol: 1, nspinor: 1, nspden: 1, mpw: 464, }
cutoff_energies: {ecut: 10.0, pawecutdg: 20.0, }
electrons: {nelect: 4.40000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.24934
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.648834 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 20.000 => boxcut(ratio)= 2.12070
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/31Ga_LDA_abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/31Ga_LDA_abinit
- Paw atomic data for element Ga - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.1.1
- 31.00000 21.00000 20070427 znucl, zion, pspdat
7 7 2 0 726 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 1.80000000
4 radial meshes are used:
- mesh 1: r(i)=step*(i-1), size= 726 , step= 0.25000E-02
- mesh 2: r(i)=step*(i-1), size= 721 , step= 0.25000E-02
- mesh 3: r(i)=step*(i-1), size= 746 , step= 0.25000E-02
- mesh 4: r(i)=step*(i-1), size=4001 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33As_LDA_abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33As_LDA_abinit
- Paw atomic data for element As - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.1.1
- 33.00000 23.00000 20070531 znucl, zion, pspdat
7 7 2 0 686 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 1.70000000
4 radial meshes are used:
- mesh 1: r(i)=step*(i-1), size= 686 , step= 0.25000E-02
- mesh 2: r(i)=step*(i-1), size= 681 , step= 0.25000E-02
- mesh 3: r(i)=step*(i-1), size= 706 , step= 0.25000E-02
- mesh 4: r(i)=step*(i-1), size=4001 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.13634637E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 455.875 455.779
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -588.73666062795 -5.887E+02 1.696E+02 1.500E+03
ETOT 2 -592.91038046525 -4.174E+00 7.337E-02 2.467E+02
ETOT 3 -589.90998122300 3.000E+00 1.300E-01 4.770E+00
ETOT 4 -589.80458549234 1.054E-01 2.709E-02 9.581E-01
ETOT 5 -589.80445496561 1.305E-04 1.778E-03 4.283E-01
ETOT 6 -589.80049401243 3.961E-03 1.176E-03 3.038E-02
ETOT 7 -589.80052550388 -3.149E-05 2.781E-05 2.125E-02
ETOT 8 -589.80034099550 1.845E-04 2.745E-05 5.682E-04
ETOT 9 -589.80034052590 4.696E-07 7.503E-07 2.862E-05
ETOT 10 -589.80034093976 -4.139E-07 3.013E-08 1.673E-06
ETOT 11 -589.80034092231 1.745E-08 4.434E-09 2.215E-07
ETOT 12 -589.80034092000 2.309E-09 5.249E-10 1.323E-08
ETOT 13 -589.80034091982 1.758E-10 7.987E-11 1.709E-10
At SCF step 13 max residual= 7.99E-11 < tolwfr= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.81006525E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.81006525E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.81006525E-02 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 1.758E-10, res2: 1.709E-10, residm: 7.987E-11, diffor: null, }
etotal : -5.89800341E+02
entropy : 0.00000000E+00
fermie : 2.02175171E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.81006525E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.81006525E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.81006525E-02, ]
pressure_GPa: -8.2675E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ 7.62069403E-29, 1.27011567E-29, -1.01609254E-28, ]
- [ -7.62069403E-29, -1.27011567E-29, 1.01609254E-28, ]
force_length_stats: {min: 1.27645045E-28, max: 1.27645045E-28, mean: 1.27645045E-28, }
...
---------------------------------------------------------------
Calculation of overlap and call to wannier90 library
to obtain maximally localized wannier functions
- t02o_w90.win is a mandatory secondary input
- t02o_w90.wout is the output for the library
- t02o_w90random.amn contains random projections
- t02o_w90.amn contains projections
- t02o_w90.mmn contains the overlap
- t02o_w90.eig contains the eigenvalues
---------------------------------------------------------------
mlwfovlp : mlwfovlp_setup done -
- see t02o_w90.wout for details.
Writing top of the overlap matrix: M_mn(ikb,ik)
m=n=1:3, ikb=1, ik=1
; ( 0.617089 -0.486291 , 0.380611 0.444824 , 0.000000 -0.000000 , )
; ( 0.388906 0.183097 , 0.114928 -0.494715 , 0.048686 -0.032432 , )
; ( -0.012847 0.028817 , 0.036479 0.007684 , -0.481997 -0.651675 , )
Writing bottom of the overlap matrix: M_mn(ikb,ik)
m=n=num_bands-2:num_bands, ikb=nntot, ik=nkpt
; ( 0.508514 -0.241641 , -0.347830 -0.420751 , 0.025727 0.036461 , )
; ( -0.405909 -0.195864 , 0.029871 -0.148751 , -0.234392 0.159016 , )
; ( -0.143655 -0.071262 , 0.068006 -0.094423 , 0.647659 -0.398982 , )
Writing top of the initial projections matrix: A_mn(ik)
m=1:3, n=1:3, ik=1
; ( 0.378144 -0.000000 , 0.378144 -0.000000 , 0.378144 0.000000 , )
; ( -0.221589 -0.013324 , -0.158646 -0.024362 , -0.180358 0.037714 , )
; ( -0.169586 -0.007206 , -0.350337 -0.018814 , 0.519071 -0.015119 , )
Writing bottom of the initial projections matrix: A_mn(ik)
m=num_bands-2:num_bands, n=nwan-2:nwan, ik=nkpt
; ( 0.230380 0.000000 , 0.230380 -0.000000 , 0.230380 -0.000000 , )
; ( 0.002175 -0.089885 , -0.001434 -0.378540 , -0.000741 0.468425 , )
; ( 0.000400 -0.488995 , 0.001683 0.322340 , -0.002083 0.166655 , )
mlwfovlp : mlwfovlp_run completed -
- see t02o_w90.wout for details.
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.80000 18.43465446
2 1.70000 19.47876112
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 28.924731750830055
Compensation charge over fine fft grid = 28.924865696431741
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-4.21983 0.54159 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.54159 0.28203 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -3.19999 0.00000 0.00000 0.16908 0.00000 0.00000 0.00000 0.00000 0.00000 0.00130 ...
0.00000 0.00000 0.00000 -3.19999 0.00000 0.00000 0.16908 0.00000 0.00130 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -3.19999 0.00000 0.00000 0.16908 0.00000 0.00130 0.00000 0.00000 ...
0.00000 0.00000 0.16908 0.00000 0.00000 0.07745 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00017 ...
0.00000 0.00000 0.00000 0.16908 0.00000 0.00000 0.07745 0.00000 -0.00017 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.16908 0.00000 0.00000 0.07745 0.00000 -0.00017 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00130 0.00000 0.00000 -0.00017 0.00000 -0.70403 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00130 0.00000 0.00000 -0.00017 0.00000 -0.70403 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.70421 0.00000 ...
0.00000 0.00000 0.00130 0.00000 0.00000 -0.00017 0.00000 0.00000 0.00000 0.00000 0.00000 -0.70403 ...
... only 12 components have been written...
Atom # 2
-5.67869 0.85063 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.85063 0.60160 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -4.49078 0.00000 0.00000 0.29471 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00099 ...
0.00000 0.00000 0.00000 -4.49078 0.00000 0.00000 0.29471 0.00000 -0.00099 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -4.49078 0.00000 0.00000 0.29471 0.00000 -0.00099 0.00000 0.00000 ...
0.00000 0.00000 0.29471 0.00000 0.00000 0.19820 0.00000 0.00000 0.00000 0.00000 0.00000 0.00021 ...
0.00000 0.00000 0.00000 0.29471 0.00000 0.00000 0.19820 0.00000 0.00021 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.29471 0.00000 0.00000 0.19820 0.00000 0.00021 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.00099 0.00000 0.00000 0.00021 0.00000 -1.49765 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.00099 0.00000 0.00000 0.00021 0.00000 -1.49765 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.49766 0.00000 ...
0.00000 0.00000 -0.00099 0.00000 0.00000 0.00021 0.00000 0.00000 0.00000 0.00000 0.00000 -1.49765 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
Atom # 1
1.99707 -0.02113 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.02113 1.17811 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 2.00266 0.00000 0.00000 0.00922 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 ...
0.00000 0.00000 0.00000 2.00266 0.00000 0.00000 0.00922 0.00000 -0.00009 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 2.00266 0.00000 0.00000 0.00922 0.00000 -0.00009 0.00000 0.00000 ...
0.00000 0.00000 0.00922 0.00000 0.00000 0.95979 0.00000 0.00000 0.00000 0.00000 0.00000 -0.05361 ...
0.00000 0.00000 0.00000 0.00922 0.00000 0.00000 0.95979 0.00000 -0.05361 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00922 0.00000 0.00000 0.95979 0.00000 -0.05361 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.00009 0.00000 0.00000 -0.05361 0.00000 2.06809 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.00009 0.00000 0.00000 -0.05361 0.00000 2.06809 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.06844 0.00000 ...
0.00000 0.00000 -0.00009 0.00000 0.00000 -0.05361 0.00000 0.00000 0.00000 0.00000 0.00000 2.06809 ...
... only 12 components have been written...
Atom # 2
1.99769 -0.02322 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.02322 1.63193 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 2.00508 0.00000 0.00000 0.03806 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 ...
0.00000 0.00000 0.00000 2.00508 0.00000 0.00000 0.03806 0.00000 0.00003 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 2.00508 0.00000 0.00000 0.03806 0.00000 0.00003 0.00000 0.00000 ...
0.00000 0.00000 0.03806 0.00000 0.00000 1.44306 0.00000 0.00000 0.00000 0.00000 0.00000 0.00946 ...
0.00000 0.00000 0.00000 0.03806 0.00000 0.00000 1.44306 0.00000 0.00946 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.03806 0.00000 0.00000 1.44306 0.00000 0.00946 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00946 0.00000 2.05577 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00946 0.00000 2.05577 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.05657 0.00000 ...
0.00000 0.00000 0.00003 0.00000 0.00000 0.00946 0.00000 0.00000 0.00000 0.00000 0.00000 2.05577 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 18.760E-12; max= 79.872E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 4.5986E-28; max dE/dt= 5.3853E-28; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 -0.000000000000
2 -0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 7.3695901E-29 1.0160925E-28 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 3.7895953E-27 5.2249575E-27 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t02o_EIG
Fermi (or HOMO) energy (hartree) = 0.20218 Average Vxc (hartree)= -0.39341
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 26, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-6.51841 -4.95476 -4.62181 -4.62181 -4.62181 -3.29153 -3.29153 -3.29153
-1.21391 -1.21391 -1.21391 -1.19999 -1.19999 -0.40679 -0.40679 -0.40679
-0.40110 -0.40110 -0.26205 0.20218 0.20218 0.20218 0.23579 0.33272
0.33272 0.33272
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.73601801759719E+01
hartree : 1.71112072743560E+02
xc : -3.75648166056386E+01
Ewald energy : -2.46320111270634E+02
psp_core : 1.05333475682522E+01
local_psp : -4.48393589713401E+02
spherical_terms : -6.65274098146298E+01
total_energy : -5.89800326916520E+02
total_energy_eV : -1.60492830964789E+04
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -8.64004762952617E+01
Ewald energy : -2.46320111270634E+02
psp_core : 1.05333475682522E+01
xc_dc : -1.59249120516689E+02
spherical_terms : -1.08363980405489E+02
total_energy_dc : -5.89800340919822E+02
total_energy_dc_eV : -1.60492834775281E+04
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.81006525E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.81006525E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.81006525E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -8.2675E+02 GPa]
- sigma(1 1)= 8.26749602E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 8.26749602E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 8.26749602E+02 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97200000E+01 7.49216000E+01
diemac 1.00000000E+01
ecut 1.00000000E+01 Hartree
etotal -5.8980034092E+02
fcart 7.6206940278E-29 1.2701156713E-29 -1.0160925370E-28
-7.6206940278E-29 -1.2701156713E-29 1.0160925370E-28
- fftalg 512
istwfk 1 1 1 1 1 1 1 1
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 0
P mkmem 8
natom 2
nband 26
ngfft 24 24 24
ngfftdg 32 32 32
nkpt 8
nsym 24
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
pawecutdg 2.00000000E+01 Hartree
prtwant 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
strten 2.8100652527E-02 2.8100652527E-02 2.8100652527E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolwfr 1.00000000E-10
typat 1 2
useylm 1
wtk 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
w90iniprj 2
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Plane-wave based electronic structure calculations for correlated materials.
- using dynamical mean-field theory and projected local orbitals,
- B. Amadon, F. Lechermann, A. Georges, F. Jollet, T.O. Wehling, A.I. Lichenstein,
- Phys. Rev. B 77, 205112 (2008).
- Comment: to be cited in case the computation of overlap operator for Wannier90 interface within PAW is used,
- i.e. prtwant=2 and usepaw=1. The paper describes also the DFT+DMFT implementation on Wannier functions
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2008
-
- [2] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 5.7 wall= 5.8
================================================================================
Calculation completed.
.Delivered 3 WARNINGs and 3 COMMENTs to log file.
+Overall time at end (sec) : cpu= 5.7 wall= 5.8