abinit/tests/v9/Refs/t66.abo

2319 lines
109 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h16 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v9_t66/t66.abi
- output file -> t66.abo
- root for input files -> t66i
- root for output files -> t66o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 32 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 8 mffmem = 1 mkmem = 2
mpw = 1498 nfft = 32768 nkpt = 2
================================================================================
P This job should need less than 12.093 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.368 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = -3 lmnmax = 6 lnmax = 6
mgfft = 32 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 8 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 1498
nfft = 32768 nkpt = 16
================================================================================
P This job should need less than 17.782 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.928 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 6 lnmax = 6
mgfft = 32 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 8 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 1498
nfft = 32768 nkpt = 16
================================================================================
P This job should need less than 18.032 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.928 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
DATASET 4 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 6
lnmax = 6 mgfft = 32 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 12 mffmem = 1 mkmem = 1
mpw = 730 nfft = 32768 nkpt = 1
================================================================================
P This job should need less than 7.585 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.136 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
DATASET 5 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = -2 lmnmax = 18 lnmax = 6
mgfft = 32 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 12 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 1459
nfft = 32768 nkpt = 1
================================================================================
P This job should need less than 11.718 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.269 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
DATASET 6 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 6
lnmax = 6 mgfft = 32 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 12 mffmem = 1 mkmem = 1
mpw = 730 nfft = 32768 nkpt = 1
================================================================================
P This job should need less than 7.585 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.136 Mbytes ; DEN or POT disk file : 0.252 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 9.1360000000E+00 9.1360000000E+00 9.1360000000E+00 Bohr
amu 4.00780000E+01 1.59994000E+01
chneut1 1
chneut2 1
chneut3 1
chneut4 1
chneut5 1
chneut6 0
ddb_ngqpt1 0 0 0
ddb_ngqpt2 0 0 0
ddb_ngqpt3 0 0 0
ddb_ngqpt4 0 0 0
ddb_ngqpt5 0 0 0
ddb_ngqpt6 1 1 1
diemac 6.00000000E+00
ecut 3.00000000E+01 Hartree
eph_frohlichm1 0
eph_frohlichm2 0
eph_frohlichm3 0
eph_frohlichm4 0
eph_frohlichm5 0
eph_frohlichm6 1
eph_task1 1
eph_task2 1
eph_task3 1
eph_task4 1
eph_task5 1
eph_task6 10
- fftalg 512
getddb1 0
getddb2 0
getddb3 0
getddb4 0
getddb5 0
getddb6 3
getddk1 0
getddk2 0
getddk3 2
getddk4 0
getddk5 0
getddk6 0
getden1 0
getden2 0
getden3 0
getden4 1
getden5 1
getden6 0
getefmas1 0
getefmas2 0
getefmas3 0
getefmas4 0
getefmas5 0
getefmas6 5
getwfk1 0
getwfk2 -1
getwfk3 1
getwfk4 0
getwfk5 4
getwfk6 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 2
get1wf6 0
iscf1 7
iscf2 -3
iscf3 7
iscf4 -2
iscf5 -2
iscf6 -2
istwfk4 2
istwfk5 1
istwfk6 2
ixc 11
jdtset 1 2 3 4 5 6
kpt1 0.00000000E+00 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
kpt2 0.00000000E+00 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 0
kptopt5 0
kptopt6 0
kptrlatt -2 2 2 2 -2 2 2 2 -2
kptrlen1 1.82720000E+01
kptrlen2 1.82720000E+01
kptrlen3 1.82720000E+01
kptrlen4 3.00000000E+01
kptrlen5 3.00000000E+01
kptrlen6 3.00000000E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 1
P mkmem5 1
P mkmem6 1
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 1
P mkqmem5 1
P mkqmem6 1
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 1
P mk1mem5 1
P mk1mem6 1
natom 2
nband1 8
nband2 8
nband3 8
nband4 12
nband5 12
nband6 12
nbdbuf1 0
nbdbuf2 0
nbdbuf3 0
nbdbuf4 2
nbdbuf5 2
nbdbuf6 2
ndtset 6
ngfft 32 32 32
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 1
nkpt5 1
nkpt6 1
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 0
nqpt5 1
nqpt6 1
nstep1 100
nstep2 100
nstep3 100
nstep4 100
nstep5 10
nstep6 100
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 0
optdriver5 1
optdriver6 7
prtphdos1 1
prtphdos2 1
prtphdos3 1
prtphdos4 1
prtphdos5 1
prtphdos6 0
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 0
prtpot5 1
prtpot6 0
rfelfd1 0
rfelfd2 2
rfelfd3 3
rfelfd4 0
rfelfd5 2
rfelfd6 0
rfphon1 0
rfphon2 0
rfphon3 1
rfphon4 0
rfphon5 0
rfphon6 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-10
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-08
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-10
tolwfr3 0.00000000E+00
tolwfr4 1.00000000E-10
tolwfr5 1.00000000E-10
tolwfr6 0.00000000E+00
typat 1 2
useylm1 0
useylm2 0
useylm3 0
useylm4 0
useylm5 1
useylm6 0
wtk1 0.25000 0.75000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 1.00000
wtk5 1.00000
wtk6 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.4172814888E+00 2.4172814888E+00 2.4172814888E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
4.5680000000E+00 4.5680000000E+00 4.5680000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 20.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1498, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 30.000 => boxcut(ratio)= 2.00901
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- Ca ONCVPSP-3.2.3.1 r_core= 1.45885 1.45885 1.85192
- 20.00000 10.00000 170504 znucl, zion, pspdat
8 11 2 4 400 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
3.99000000000000 6.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 2
extension_switch 1
pspatm : epsatm= 12.33414111
--- l ekb(1:nproj) -->
0 10.063789 0.972391
1 3.049878 0.471799
2 -3.406671 -1.078890
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- O ONCVPSP r_core= 1.36 1.46 1.26
- 8.00000 6.00000 151103 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 1
extension_switch 1
pspatm : epsatm= 6.19401560
--- l ekb(1:nproj) -->
0 5.257212 0.704241
1 -5.135443 -1.451781
2 -4.371486
pspatm: atomic psp has been read and splines computed
2.96450507E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 1495.750 1495.745
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -55.281663827289 -5.528E+01 7.573E-02 1.866E+02
ETOT 2 -55.188023837940 9.364E-02 2.204E-04 5.103E+02
ETOT 3 -55.383463850438 -1.954E-01 2.335E-03 1.012E+01
ETOT 4 -55.385969405475 -2.506E-03 4.475E-05 1.876E+00
ETOT 5 -55.386452549527 -4.831E-04 8.634E-06 4.996E-02
ETOT 6 -55.386470842405 -1.829E-05 2.491E-07 7.963E-04
ETOT 7 -55.386471082413 -2.400E-07 7.611E-09 7.420E-05
ETOT 8 -55.386471107448 -2.504E-08 1.840E-10 1.525E-06
ETOT 9 -55.386471107803 -3.542E-10 2.672E-11 9.667E-08
ETOT 10 -55.386471107841 -3.831E-11 2.885E-13 1.340E-09
ETOT 11 -55.386471107842 -1.329E-12 1.323E-14 2.401E-11
At SCF step 11 vres2 = 2.40E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.24704083E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.24704083E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.24704083E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 4.5680000, 4.5680000, ]
- [ 4.5680000, 0.0000000, 4.5680000, ]
- [ 4.5680000, 4.5680000, 0.0000000, ]
lattice_lengths: [ 6.46013, 6.46013, 6.46013, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.9063748E+02
convergence: {deltae: -1.329E-12, res2: 2.401E-11, residm: 1.323E-14, diffor: null, }
etotal : -5.53864711E+01
entropy : 0.00000000E+00
fermie : 1.57454922E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.24704083E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.24704083E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.24704083E-04, ]
pressure_GPa: -6.6110E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ca]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 7.64066008
2 2.00000 6.14073550
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.666E-16; max= 13.234E-15
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.41728148883912 2.41728148883912 2.41728148883912
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 9.136000000000 9.136000000000 9.136000000000 bohr
= 4.834562977678 4.834562977678 4.834562977678 angstroms
prteigrs : about to open file t66o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.15745 Average Vxc (hartree)= -0.38478
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.0000 -0.2500 (reduced coord)
-1.20198 -0.51848 -0.49798 -0.49798 -0.36495 0.12571 0.15745 0.15745
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.43918185212176E+01
hartree : 1.04443252552533E+01
xc : -1.16099094839613E+01
Ewald energy : -4.12822454170956E+01
psp_core : 1.55504842132711E+00
local_psp : -3.96632337414032E+01
non_local_psp : 7.77725336819877E-01
total_energy : -5.53864711078422E+01
total_energy_eV : -1.50714252596629E+03
band_energy : -5.34475634872731E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.24704083E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.24704083E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.24704083E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.6110E+00 GPa]
- sigma(1 1)= 6.61102124E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.61102124E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.61102124E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 16, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1498, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 30.000 => boxcut(ratio)= 2.00901
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -20.448377220755 -2.045E+01 1.632E-01 0.000E+00
ETOT 2 -20.590555338989 -1.422E-01 4.506E-03 0.000E+00
ETOT 3 -20.593168100787 -2.613E-03 9.020E-05 0.000E+00
ETOT 4 -20.593238786673 -7.069E-05 3.622E-06 0.000E+00
ETOT 5 -20.593240999175 -2.213E-06 8.885E-08 0.000E+00
ETOT 6 -20.593241073406 -7.423E-08 4.463E-09 0.000E+00
ETOT 7 -20.593241075720 -2.314E-09 1.090E-10 0.000E+00
ETOT 8 -20.593241075720 3.553E-15 9.894E-11 0.000E+00
At SCF step 8 max residual= 9.89E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 59.165E-12; max= 98.942E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 9.7854188681E-01
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= 0.0000 0.0000 -0.2500 (reduced coord)
0.00363 -0.03855 0.00219 -0.00612 0.04155 -0.09268 -0.02011 -0.06675
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.61491828E+01 eigvalue= 1.27169221E+00 local= -2.49046575E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.44322400E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -1.92304212E+00 enl1= 3.24582349E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.05932411E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.2059324108E+02 Ha. Also 2DEtotal= -0.560370587833E+03 eV
( non-var. 2DEtotal : -2.0593208264E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -20.448377220462 -2.045E+01 1.632E-01 0.000E+00
ETOT 2 -20.590555338698 -1.422E-01 4.506E-03 0.000E+00
ETOT 3 -20.593168100497 -2.613E-03 9.020E-05 0.000E+00
ETOT 4 -20.593238786326 -7.069E-05 3.622E-06 0.000E+00
ETOT 5 -20.593240998880 -2.213E-06 8.885E-08 0.000E+00
ETOT 6 -20.593241073115 -7.424E-08 4.463E-09 0.000E+00
ETOT 7 -20.593241075429 -2.314E-09 1.090E-10 0.000E+00
ETOT 8 -20.593241075429 7.105E-15 9.894E-11 0.000E+00
At SCF step 8 max residual= 9.89E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 59.205E-12; max= 98.942E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 9.7854188624E-01
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= 0.0000 0.0000 -0.2500 (reduced coord)
0.00363 -0.03855 0.00219 -0.00612 0.04155 -0.09268 -0.02011 -0.06675
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.61491827E+01 eigvalue= 1.27169223E+00 local= -2.49046574E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.44322400E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -1.92304211E+00 enl1= 3.24582349E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.05932411E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.2059324108E+02 Ha. Also 2DEtotal= -0.560370587825E+03 eV
( non-var. 2DEtotal : -2.0593208251E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -20.448377263574 -2.045E+01 1.632E-01 0.000E+00
ETOT 2 -20.590555339349 -1.422E-01 4.506E-03 0.000E+00
ETOT 3 -20.593168100238 -2.613E-03 9.020E-05 0.000E+00
ETOT 4 -20.593238785928 -7.069E-05 3.622E-06 0.000E+00
ETOT 5 -20.593240998628 -2.213E-06 8.886E-08 0.000E+00
ETOT 6 -20.593241072838 -7.421E-08 4.463E-09 0.000E+00
ETOT 7 -20.593241075152 -2.314E-09 1.090E-10 0.000E+00
ETOT 8 -20.593241075152 3.553E-15 9.894E-11 0.000E+00
At SCF step 8 max residual= 9.89E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 59.057E-12; max= 98.938E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 9.7854189130E-01
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= 0.0000 0.0000 -0.2500 (reduced coord)
-0.01091 0.11565 0.00589 0.00589 -0.12464 0.27803 0.13029 0.13029
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.61491802E+01 eigvalue= 1.27169239E+00 local= -2.49046555E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.44322402E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -1.92304149E+00 enl1= 3.24582350E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.05932411E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.2059324108E+02 Ha. Also 2DEtotal= -0.560370587817E+03 eV
( non-var. 2DEtotal : -2.0593208365E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.8523513501 0.0000000000
1 2 0.4261756663 0.0000000000
1 3 0.4261756838 0.0000000000
2 1 0.4261756663 0.0000000000
2 2 0.8523513513 0.0000000000
2 3 0.4261756849 0.0000000000
3 1 0.4261756838 0.0000000000
3 2 0.4261756849 0.0000000000
3 3 0.8523513687 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 16, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1498, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getddk/=0, take file _1WF from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 30.000 => boxcut(ratio)= 2.00901
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 3.7479423883417 -1.822E+03 7.862E+00 8.596E+02
ETOT 2 1.5345604203455 -2.213E+00 6.279E-03 1.612E+01
ETOT 3 1.5188252928524 -1.574E-02 3.582E-04 3.522E+00
ETOT 4 1.5175281080669 -1.297E-03 1.240E-05 4.849E-01
ETOT 5 1.5171735475360 -3.546E-04 2.450E-06 2.682E-02
ETOT 6 1.5171573249693 -1.622E-05 1.174E-07 1.247E-03
ETOT 7 1.5171564182490 -9.067E-07 6.208E-09 9.771E-06
ETOT 8 1.5171564108859 -7.363E-09 5.121E-11 3.661E-08
ETOT 9 1.5171564108055 -8.049E-11 2.341E-12 6.862E-10
At SCF step 9 vres2 = 6.86E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t66o_DS2_1WF7
-open ddk wf file :t66o_DS2_1WF8
-open ddk wf file :t66o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.769E-14; max= 23.406E-13
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.08958730E+03 eigvalue= 2.80615864E+02 local= -1.64014124E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.98911307E+03 Hartree= 4.92156602E+02 xc= -1.30814672E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 7.32772097E+02 enl1= -1.65923883E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.82417595E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 9.73555559E+02 fr.nonlo= 8.30248872E+02 Ewald= 5.50191358E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.80977072E+02 frxc 2 = 1.47846610E+02
Resulting in :
2DEtotal= 0.1517156411E+01 Ha. Also 2DEtotal= 0.412839254701E+02 eV
(2DErelax= -1.8241759477E+03 Ha. 2DEnonrelax= 1.8256931041E+03 Ha)
( non-var. 2DEtotal : 1.5171545699E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 4.3663794781306 -2.287E+03 4.503E+00 2.161E+03
ETOT 2 1.6465244631546 -2.720E+00 1.554E-01 9.509E+01
ETOT 3 1.5621560506775 -8.437E-02 1.938E-03 1.927E+00
ETOT 4 1.5594340463623 -2.722E-03 1.808E-04 1.643E-01
ETOT 5 1.5593076038996 -1.264E-04 4.552E-06 8.633E-03
ETOT 6 1.5593014518896 -6.152E-06 1.684E-07 8.957E-04
ETOT 7 1.5593006831160 -7.688E-07 8.564E-09 6.086E-06
ETOT 8 1.5593006738855 -9.230E-09 1.126E-10 9.899E-08
ETOT 9 1.5593006738128 -7.276E-11 6.712E-12 2.963E-09
At SCF step 9 vres2 = 2.96E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t66o_DS2_1WF7
-open ddk wf file :t66o_DS2_1WF8
-open ddk wf file :t66o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 65.082E-14; max= 67.119E-13
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.72661309E+03 eigvalue= -6.49985614E+01 local= -9.47003649E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.40864307E+03 Hartree= 3.92675638E+02 xc= -1.04492285E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.87125398E+02 enl1= -3.17119621E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.28991965E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 6.72992422E+02 fr.nonlo= 1.58458718E+03 Ewald= 5.50191358E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -9.53399590E+01 frxc 2 = 7.42201713E+01
Resulting in :
2DEtotal= 0.1559300674E+01 Ha. Also 2DEtotal= 0.424307291883E+02 eV
(2DErelax= -2.2899196539E+03 Ha. 2DEnonrelax= 2.2914789545E+03 Ha)
( non-var. 2DEtotal : 1.5593146895E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t66o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -47.531012890340 -4.753E+01 1.419E+00 4.419E+03
ETOT 2 -49.865736538307 -2.335E+00 4.599E-02 7.810E+02
ETOT 3 -50.481550626526 -6.158E-01 4.929E-03 5.498E+01
ETOT 4 -50.518306854478 -3.676E-02 1.446E-04 2.544E-01
ETOT 5 -50.518442880333 -1.360E-04 2.488E-06 1.232E-02
ETOT 6 -50.518449154450 -6.274E-06 2.679E-07 3.452E-04
ETOT 7 -50.518449412324 -2.579E-07 3.745E-09 7.951E-06
ETOT 8 -50.518449418622 -6.298E-09 2.915E-10 2.912E-07
ETOT 9 -50.518449418908 -2.860E-10 5.045E-12 1.483E-09
At SCF step 9 vres2 = 1.48E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t66o_DS2_1WF7
-open ddk wf file :t66o_DS2_1WF8
-open ddk wf file :t66o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 72.869E-14; max= 50.454E-13
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.11175887E+02 eigvalue= -1.87938276E+01 local= -1.27750487E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -1.01036888E+02 Hartree= 6.86420061E+00 xc= -5.20359495E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -1.57737394E+01 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.05184494E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.5051844942E+02 Ha. Also 2DEtotal= -0.137467691915E+04 eV
( non-var. 2DEtotal : -5.0518444174E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.343409 0.000000
1 2 -0.000000 0.000000
1 3 0.000000 0.000000
2 1 -0.000000 0.000000
2 2 0.343409 0.000000
2 3 -0.000000 0.000000
3 1 0.000000 0.000000
3 2 0.000000 0.000000
3 3 0.343409 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 2.186596E+00 -7.686906E-16 4.020469E-16
1 2 -1.212780E-15 2.186596E+00 -3.937902E-16
1 3 1.212780E-15 7.686906E-16 2.186596E+00
2 1 -2.186596E+00 7.686906E-16 -4.020469E-16
2 2 1.212780E-15 -2.186596E+00 3.937902E-16
2 3 -1.212780E-15 -7.686906E-16 -2.186596E+00
Now, the imaginary part of the dynamical matrix is zeroed
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 1.5171545804 0.0000000000
1 1 2 1 0.7585772902 0.0000000000
1 1 3 1 0.7585772902 0.0000000000
1 1 1 2 -1.5183830443 0.0000000000
1 1 2 2 -0.7591915222 0.0000000000
1 1 3 2 -0.7591915222 0.0000000000
1 1 1 4 -48.0142151936 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 1 1 0.7585772902 0.0000000000
2 1 2 1 1.5171545804 0.0000000000
2 1 3 1 0.7585772902 0.0000000000
2 1 1 2 -0.7591915222 0.0000000000
2 1 2 2 -1.5183830443 0.0000000000
2 1 3 2 -0.7591915222 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -48.0142151936 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 1 1 0.7585772902 0.0000000000
3 1 2 1 0.7585772902 0.0000000000
3 1 3 1 1.5171545804 0.0000000000
3 1 1 2 -0.7591915222 0.0000000000
3 1 2 2 -0.7591915222 0.0000000000
3 1 3 2 -1.5183830443 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -48.0142151936 0.0000000000
1 2 1 1 -1.5183756154 0.0000000000
1 2 2 1 -0.7591878077 0.0000000000
1 2 3 1 -0.7591878077 0.0000000000
1 2 1 2 1.5914027059 0.0000000000
1 2 2 2 0.7957013530 0.0000000000
1 2 3 2 0.7957013530 0.0000000000
1 2 1 4 -50.3590449889 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 1 1 -0.7591878077 0.0000000000
2 2 2 1 -1.5183756154 0.0000000000
2 2 3 1 -0.7591878077 0.0000000000
2 2 1 2 0.7957013530 0.0000000000
2 2 2 2 1.5914027059 0.0000000000
2 2 3 2 0.7957013530 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 2 4 -50.3590449889 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -0.7591878077 0.0000000000
3 2 2 1 -0.7591878077 0.0000000000
3 2 3 1 -1.5183756154 0.0000000000
3 2 1 2 0.7957013530 0.0000000000
3 2 2 2 0.7957013530 0.0000000000
3 2 3 2 1.5914027059 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
3 2 3 4 -50.3590449889 0.0000000000
1 4 1 1 -48.0142349481 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -50.3589603286 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 -50.5184441743 0.0000000000
1 4 2 4 16.8394813914 0.0000000000
1 4 3 4 16.8394813914 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
2 4 2 1 -48.0142349481 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -50.3589603286 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
2 4 1 4 16.8394813914 0.0000000000
2 4 2 4 -50.5184441743 0.0000000000
2 4 3 4 16.8394813914 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 -48.0142349481 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
3 4 2 2 -0.0000000000 0.0000000000
3 4 3 2 -50.3589603286 0.0000000000
3 4 1 4 16.8394813914 0.0000000000
3 4 2 4 16.8394813914 0.0000000000
3 4 3 4 -50.5184441743 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0363830547 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.0363830547 0.0000000000
1 1 2 2 -0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0363830547 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 0.0000000000
2 1 2 2 -0.0363830547 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0363830547 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0363830547 0.0000000000
1 2 1 1 -0.0363828767 0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 0.0363828767 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.0363828767 0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0363828767 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 0.0000000000
3 2 3 1 -0.0363828767 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0363828767 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 3.3468359917 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 3.3468359917 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 3.3468359917 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 2.1865956263 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -2.1865956263 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
2 1 2 4 2.1865956263 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -2.1865956263 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 2.1865956263 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 -2.1865956263 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 2.1865873172 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 -0.0000000000 0.0000000000
2 4 2 1 2.1865873172 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 2.1865873172 0.0000000000
1 4 1 2 -2.1865873172 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -2.1865873172 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -2.1865873172 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.321167E-03 1.321167E-03
1.321167E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 2.899627E+02 2.899627E+02
- 2.899627E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.321167E-03 1.321167E-03
2.502645E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 2.899627E+02 2.899627E+02
- 5.492671E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.321167E-03 1.321167E-03
2.502645E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 2.899627E+02 2.899627E+02
- 5.492671E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.321167E-03 1.321167E-03
2.502645E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 2.899627E+02 2.899627E+02
- 5.492671E+02
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 730, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 30.000 => boxcut(ratio)= 2.00901
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t66o_DS4_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
8.72E-11 3.40E-11 4.09E-11 1.99E-11 6.72E-11 7.07E-11 7.44E-11 5.86E-11
7.46E-11 9.69E-11 6.67E-11 8.22E-11
-1.2037E+00 -4.9704E-01 -4.9704E-01 -4.9704E-01 -3.8772E-01 1.8064E-01
1.8064E-01 1.8064E-01 3.5093E-01 4.1014E-01 4.1014E-01 4.1014E-01
--- !ResultsGS
iteration_state: {dtset: 4, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 4.5680000, 4.5680000, ]
- [ 4.5680000, 0.0000000, 4.5680000, ]
- [ 4.5680000, 4.5680000, 0.0000000, ]
lattice_lengths: [ 6.46013, 6.46013, 6.46013, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.9063748E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.694E-11, diffor: 0.000E+00, }
etotal : -5.53864711E+01
entropy : 0.00000000E+00
fermie : 1.57454922E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ca]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 7.64066008
2 2.00000 6.14073550
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 62.465E-12; max= 96.940E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.41728148883912 2.41728148883912 2.41728148883912
length scales= 9.136000000000 9.136000000000 9.136000000000 bohr
= 4.834562977678 4.834562977678 4.834562977678 angstroms
prteigrs : about to open file t66o_DS4_EIG
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.20370 -0.49704 -0.49704 -0.49704 -0.38772 0.18064 0.18064 0.18064
0.35093 0.41014 0.41014 0.41014
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1459, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 4.
mkfilename : get1wf/=0, take file _1WF from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 30.000 => boxcut(ratio)= 2.00901
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- Ca ONCVPSP-3.2.3.1 r_core= 1.45885 1.45885 1.85192
- 20.00000 10.00000 170504 znucl, zion, pspdat
8 11 2 4 400 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
3.99000000000000 6.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 2
extension_switch 1
pspatm : epsatm= 12.33414111
--- l ekb(1:nproj) -->
0 10.063789 0.972391
1 3.049878 0.471799
2 -3.406671 -1.078890
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- O ONCVPSP r_core= 1.36 1.46 1.26
- 8.00000 6.00000 151103 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 1
extension_switch 1
pspatm : epsatm= 6.19401560
--- l ekb(1:nproj) -->
0 5.257212 0.704241
1 -5.135443 -1.451781
2 -4.371486
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -2, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.512044447490 -3.051E+01 2.346E-01 0.000E+00
ETOT 2 -30.879811534659 -3.678E-01 6.356E-03 0.000E+00
ETOT 3 -30.889556940127 -9.745E-03 2.312E-04 0.000E+00
ETOT 4 -30.889856938594 -3.000E-04 4.554E-06 0.000E+00
ETOT 5 -30.889867251239 -1.031E-05 2.461E-07 0.000E+00
ETOT 6 -30.889867620561 -3.693E-07 5.721E-09 0.000E+00
ETOT 7 -30.889867634098 -1.354E-08 3.337E-10 0.000E+00
ETOT 8 -30.889867634316 -2.183E-10 9.970E-11 0.000E+00
At SCF step 8 max residual= 9.97E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 60.611E-12; max= 99.699E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 1.5070291984E+00
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.21983467E+01 eigvalue= -2.07240554E+00 local= -2.75043697E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.84290412E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.25011320E+01 enl0= -4.23290313E+00 enl1= 6.64937331E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.08898676E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3088986763E+02 Ha. Also 2DEtotal= -0.840556045582E+03 eV
( non-var. 2DEtotal : -3.0889833932E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -2, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.499870709600 -3.050E+01 2.346E-01 0.000E+00
ETOT 2 -30.879843230104 -3.800E-01 6.384E-03 0.000E+00
ETOT 3 -30.889585356200 -9.742E-03 2.312E-04 0.000E+00
ETOT 4 -30.889873794435 -2.884E-04 4.527E-06 0.000E+00
ETOT 5 -30.889883439515 -9.645E-06 2.461E-07 0.000E+00
ETOT 6 -30.889883775938 -3.364E-07 5.721E-09 0.000E+00
ETOT 7 -30.889883788109 -1.217E-08 3.337E-10 0.000E+00
ETOT 8 -30.889883788259 -1.500E-10 9.824E-11 0.000E+00
At SCF step 8 max residual= 9.82E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 59.834E-12; max= 98.239E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 1.5070299394E+00
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.21980247E+01 eigvalue= -2.07217391E+00 local= -2.75042553E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.84290748E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.25011257E+01 enl0= -4.23289064E+00 enl1= 6.64936052E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.08898838E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3088988379E+02 Ha. Also 2DEtotal= -0.840556485153E+03 eV
( non-var. 2DEtotal : -3.0889857148E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -2, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.540438461566 -3.054E+01 2.335E-01 0.000E+00
ETOT 2 -30.880740985622 -3.403E-01 6.486E-03 0.000E+00
ETOT 3 -30.889607155962 -8.866E-03 2.428E-04 0.000E+00
ETOT 4 -30.889875913478 -2.688E-04 4.238E-06 0.000E+00
ETOT 5 -30.889885082040 -9.169E-06 2.832E-07 0.000E+00
ETOT 6 -30.889885413106 -3.311E-07 4.485E-09 0.000E+00
ETOT 7 -30.889885425502 -1.240E-08 4.116E-10 0.000E+00
ETOT 8 -30.889885425838 -3.356E-10 7.939E-11 0.000E+00
At SCF step 8 max residual= 7.94E-11 < tolwfr= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.147E-12; max= 79.387E-12
dfpt_looppert : ek2= 4.5406579546E+01
f-sum rule ratio= 1.5070301022E+00
prteigrs : about to open file t66t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.21981042E+01 eigvalue= -2.07224274E+00 local= -2.75042891E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.84290822E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.25011553E+01 enl0= -4.23289977E+00 enl1= 6.64936884E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.08898854E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3088988543E+02 Ha. Also 2DEtotal= -0.840556529714E+03 eV
( non-var. 2DEtotal : -3.0889856688E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
COMMENTS:
- At k-point ( 0.000, 0.000, 0.000), bands 6 through 8
are DEGENERATE (effective mass tensor is therefore not defined).
See Section IIIB Eqs. (67)-(70) and Appendix E of PRB 93 205147 (2016).
- Angular average effective mass for Frohlich model is to be averaged over degenerate bands. See later.
- Associated theta integrals calculated with ntheta= 100 points.
K-point ( 0.000, 0.000, 0.000) | band = 6
Transport equivalent effective mass tensor:
-0.4594295264 -0.0000047475 -0.0000059558
-0.0000047475 -0.4594235047 -0.0000064888
-0.0000059558 -0.0000064888 -0.4594295067
Transport equivalent effective mass tensor eigenvalues:
-0.4594394535 -0.4594238276 -0.4594192567
Angular average effective mass 1/(<1/m>)= -0.4240507756
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.4264152748
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.3588052806
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.3588008964
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -0.3588051964
4: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -0.4938817600
5: 0.000000 0.707107 0.707107 / 0.816497 0.408248 0.408248 -> -0.4513973166
6: 0.707107 0.000000 0.707107 / 0.408248 0.816497 0.408248 -> -0.4513998739
7: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -0.4513944763
K-point ( 0.000, 0.000, 0.000) | band = 7
Transport equivalent effective mass tensor:
-3.1215370728 -0.0000222063 -0.0000226780
-0.0000222063 -3.1215792298 -0.0000324608
-0.0000226780 -0.0000324608 -3.1223726071
Transport equivalent effective mass tensor eigenvalues:
-3.1223745965 -3.1215868577 -3.1215274554
Angular average effective mass 1/(<1/m>)= -1.4616030379
Angular average effective mass for Frohlich model (<m**0.5>)**2= -1.5327945776
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -2.9255585034
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -2.9255684153
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -2.9255740443
4: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -1.3832929039
5: 0.000000 0.707107 0.707107 / 0.816497 0.408248 0.408248 -> -1.0947194417
6: 0.707107 0.000000 0.707107 / 0.408248 0.816497 0.408248 -> -1.0947189312
7: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -1.0947222362
K-point ( 0.000, 0.000, 0.000) | band = 8
Transport equivalent effective mass tensor:
-4.1295624269 -0.0000372024 -0.0000222758
-0.0000372024 -4.1296561506 -0.0000393209
-0.0000222758 -0.0000393209 -4.1285175269
Transport equivalent effective mass tensor eigenvalues:
-4.1296708373 -4.1295495176 -4.1285157496
Angular average effective mass 1/(<1/m>)= -2.3349482372
Angular average effective mass for Frohlich model (<m**0.5>)**2= -2.4045937150
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -2.9256005039
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -2.9255816252
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -2.9256022191
4: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -1.3832975761
5: 0.000000 0.707107 0.707107 / 0.816497 0.408248 0.408248 -> -2.9255646726
6: 0.707107 0.000000 0.707107 / 0.408248 0.816497 0.408248 -> -2.9255722425
7: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -2.9256139837
Angular average effective mass for Frohlich model, averaged over degenerate bands.
Value of (<<m**0.5>>)**2 = 1.316176E+00
Absolute Value of <<m**0.5>> = 1.147247E+00
K-point ( 0.000, 0.000, 0.000) | band = 9
Effective mass tensor:
0.3900341972 0.0000042538 0.0000060839
0.0000042538 0.3900179491 0.0000056614
0.0000060839 0.0000056614 0.3900355458
Effective mass tensor eigenvalues:
0.3900159339 0.3900287751 0.3900429831
Angular average effective mass 1/(<1/m>)= 0.3900292304
Angular average effective mass for Frohlich model (<m**0.5>)**2= 0.3900292305
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.3900341971
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> 0.3900179489
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> 0.3900355456
4: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> 0.3900398965
5: 0.000000 0.707107 0.707107 / 0.816497 0.408248 0.408248 -> 0.3900324085
6: 0.707107 0.000000 0.707107 / 0.408248 0.816497 0.408248 -> 0.3900409553
7: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> 0.3900303266
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 2.3527412983 0.0000000000
1 2 1.1763715630 0.0000000000
1 3 1.1763697353 0.0000000000
2 1 1.1763715630 0.0000000000
2 2 2.3527378150 0.0000000000
2 3 1.1763662521 0.0000000000
3 1 1.1763697353 0.0000000000
3 2 1.1763662521 0.0000000000
3 3 2.3527359874 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 730, }
cutoff_energies: {ecut: 30.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 10, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 4.
mkfilename : getddb/=0, take file _DDB from output of DATASET 3.
mkfilename : getefmas/=0, take file _EFMAS.nc from output of DATASET 5.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
- Reading GS states from WFK file: t66o_DS4_WFK
- Reading DDB from file: t66o_DS3_DDB
- Reading EFMAS information from file: t66o_DS5_EFMAS.nc
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 4.5680000 4.5680000 G(1)= -0.1094571 0.1094571 0.1094571
R(2)= 4.5680000 0.0000000 4.5680000 G(2)= 0.1094571 -0.1094571 0.1094571
R(3)= 4.5680000 4.5680000 0.0000000 G(3)= 0.1094571 0.1094571 -0.1094571
Unit cell volume ucvol= 1.9063748E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Ca
2) 0.5000000 0.5000000 0.5000000 O
DDB file with 1 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 2.358300E+00 2.171383E-16 2.169544E-16
1 2 2.171383E-16 2.358300E+00 -2.173223E-16
1 3 -2.171383E-16 -2.171383E-16 2.358300E+00
2 1 -2.014891E+00 9.560139E-17 9.624881E-17
2 2 9.560139E-17 -2.014891E+00 -9.495397E-17
2 3 -9.560139E-17 -9.560139E-17 -2.014891E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t66o_DS3_DDB
- Cannot find quadrupole tensor in DDB file: t66o_DS3_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 1
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
The interatomic forces have been obtained
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Ca.psp8
- Ca ONCVPSP-3.2.3.1 r_core= 1.45885 1.45885 1.85192
- 20.00000 10.00000 170504 znucl, zion, pspdat
8 11 2 4 400 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
3.99000000000000 6.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 2
extension_switch 1
pspatm : epsatm= 12.33414111
--- l ekb(1:nproj) -->
0 10.063789 0.972391
1 3.049878 0.471799
2 -3.406671 -1.078890
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/O.psp8
- O ONCVPSP r_core= 1.36 1.46 1.26
- 8.00000 6.00000 151103 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 1
extension_switch 1
pspatm : epsatm= 6.19401560
--- l ekb(1:nproj) -->
0 5.257212 0.704241
1 -5.135443 -1.451781
2 -4.371486
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
Luttinger parameters (A, B, C) (a.u.): -1.393513 -0.170906 -0.650959
--------------------------------------------------------------------------------
Polaron properties from the generalized Froehlich model
--------------------------------------------------------------------------------
Polar modes
## Frequency(meV) Epsilon*
6 66.541611 4.721243
ZPR (meV): 234.29
Electronic effective mass (a.u.) along 3 directions
Direction 100: -0.358805 -2.925580 -2.925580
Direction 110: -0.451390 -1.094738 -2.925580
Direction 111: -0.493869 -1.383295 -1.383295
Polaron effective mass (a.u.) along 3 directions
Direction 100: -6.492404 -6.209468 -6.209469
Direction 110: -7.780445 -5.360706 -6.209469
Direction 111: -8.331402 -5.616615 -5.616615
Sum rule of inverse polaron masses check-up (for convergence purposes):
Direction 100: -0.476115
Direction 110: -0.476114
Direction 111: -0.476114
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 9.1360000000E+00 9.1360000000E+00 9.1360000000E+00 Bohr
amu 4.00780000E+01 1.59994000E+01
chneut1 1
chneut2 1
chneut3 1
chneut4 1
chneut5 1
chneut6 0
ddb_ngqpt1 0 0 0
ddb_ngqpt2 0 0 0
ddb_ngqpt3 0 0 0
ddb_ngqpt4 0 0 0
ddb_ngqpt5 0 0 0
ddb_ngqpt6 1 1 1
diemac 6.00000000E+00
ecut 3.00000000E+01 Hartree
eph_frohlichm1 0
eph_frohlichm2 0
eph_frohlichm3 0
eph_frohlichm4 0
eph_frohlichm5 0
eph_frohlichm6 1
eph_task1 1
eph_task2 1
eph_task3 1
eph_task4 1
eph_task5 1
eph_task6 10
etotal1 -5.5386471108E+01
etotal2 -2.0593241075E+01
etotal3 -5.0518449419E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddb1 0
getddb2 0
getddb3 0
getddb4 0
getddb5 0
getddb6 3
getddk1 0
getddk2 0
getddk3 2
getddk4 0
getddk5 0
getddk6 0
getden1 0
getden2 0
getden3 0
getden4 1
getden5 1
getden6 0
getefmas1 0
getefmas2 0
getefmas3 0
getefmas4 0
getefmas5 0
getefmas6 5
getwfk1 0
getwfk2 -1
getwfk3 1
getwfk4 0
getwfk5 4
getwfk6 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 2
get1wf6 0
iscf1 7
iscf2 -3
iscf3 7
iscf4 -2
iscf5 -2
iscf6 -2
ixc 11
jdtset 1 2 3 4 5 6
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 0
kptopt5 0
kptopt6 0
kptrlatt -2 2 2 2 -2 2 2 2 -2
kptrlen1 1.82720000E+01
kptrlen2 1.82720000E+01
kptrlen3 1.82720000E+01
kptrlen4 3.00000000E+01
kptrlen5 3.00000000E+01
kptrlen6 3.00000000E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 1
P mkmem5 1
P mkmem6 1
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 1
P mkqmem5 1
P mkqmem6 1
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 1
P mk1mem5 1
P mk1mem6 1
natom 2
nband1 8
nband2 8
nband3 8
nband4 12
nband5 12
nband6 12
nbdbuf1 0
nbdbuf2 0
nbdbuf3 0
nbdbuf4 2
nbdbuf5 2
nbdbuf6 2
ndtset 6
ngfft 32 32 32
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 1
nkpt5 1
nkpt6 1
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 0
nqpt5 1
nqpt6 1
nstep1 100
nstep2 100
nstep3 100
nstep4 100
nstep5 10
nstep6 100
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 0
optdriver5 1
optdriver6 7
prtphdos1 1
prtphdos2 1
prtphdos3 1
prtphdos4 1
prtphdos5 1
prtphdos6 0
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 0
prtpot5 1
prtpot6 0
rfelfd1 0
rfelfd2 2
rfelfd3 3
rfelfd4 0
rfelfd5 2
rfelfd6 0
rfphon1 0
rfphon2 0
rfphon3 1
rfphon4 0
rfphon5 0
rfphon6 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
strten1 2.2470408253E-04 2.2470408253E-04 2.2470408253E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-10
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-08
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-10
tolwfr3 0.00000000E+00
tolwfr4 1.00000000E-10
tolwfr5 1.00000000E-10
tolwfr6 0.00000000E+00
typat 1 2
useylm1 0
useylm2 0
useylm3 0
useylm4 0
useylm5 1
useylm6 0
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.4172814888E+00 2.4172814888E+00 2.4172814888E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
4.5680000000E+00 4.5680000000E+00 4.5680000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 20.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Precise effective masses from density functional perturbation theory
- J. Laflamme Janssen, Y. Gillet, S. Ponce, A. Martin, M. Torrent, and X. Gonze. Phys. Rev. B 93, 205147 (2016)
- Comment: in case the DFPT prediction of effective masses is used.
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#laflamme2016
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [4] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [5] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 23.8 wall= 23.9
================================================================================
Calculation completed.
.Delivered 15 WARNINGs and 13 COMMENTs to log file.
+Overall time at end (sec) : cpu= 23.8 wall= 23.9